ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Publikationsdatum: 2023-11-23
    Beschreibung: The climatologies of the stratopause height and temperature in the UA‐ICON model are examined by comparing them to 17‐years (2005–2021) of Microwave Limb Sounder (MLS) observations. In addition, the elevated stratopause (ES) event occurrence, their main characteristics, and driving mechanisms in the UA‐ICON model are examined using three 30‐year time‐slice experiments. While UA‐ICON reasonably simulates the large‐scale stratopause properties similar to MLS observations, at polar latitudes in the Southern Hemisphere the stratopause is ∼8 K warmer and ∼3 km higher than observed. A time lag of about two months also exists in the occurrence of the tropical semiannual oscillation of the stratopause compared to the observations. ES events occur in ∼20% of the boreal winters, after major sudden stratospheric warmings (SSWs). Compared to the SSWs not followed by ES events (SSW‐only), the ES events are associated with the persistent tropospheric forcing and prolonged anomalies of the stratospheric jet. Our modeling results suggest that the contributions of both gravity waves (GW)s and resolved waves are important in explaining the enhanced residual circulation following ES events compared to the SSW‐only events but their contributions vary through the lifetime of ES events. We emphasize the role of the resolved wave drag in the ES formation as in the sensitivity test when the non‐orographic GW drag is absent, the anomalously enhanced resolved wave forcing in the mesosphere gives rise to the formation of the elevated stratopause at about 85 km.
    Beschreibung: Plain Language Summary: Using 17 years (2005–2021) of Microwave Limb Sounder (MLS) observations, we show negative (cooling stratopause temperatures and decreasing stratopause heights) trends in most regions and seasons. The largest negative trend in the stratopause temperature (by considering all regions and all seasons) is found in the Southern Hemisphere (SH)'s polar region during austral spring. The seasonal average of cooling rates is comparable in the mid‐latitudes of Northern Hemisphere and SH. In the UA‐ICON simulations, the elevated stratopause events (ESEs) occur after major sudden stratospheric warmings (SSWs). ESEs frequency is 2 events per decade in UA‐ICON simulations. Our results show that the wind reversal is stronger and long‐lasting in the ESEs compared to SSW‐only events. In addition, the easterlies extend to the mesosphere in the composites of ESEs, but the reversed winds are limited to below 60 km in the case of SSW‐only events. We show that the non‐orographic gravity wave drag induces anomalous residual circulation after SSW that causes the ESEs. We also show that the ESEs form even in the absence of non‐orographic gravity wave drag. In this case, the anomalous residual circulation is due to the anomalously enhanced resolved wave forcing in the mesosphere that gives rise to the formation of the ESEs at about 85 km.
    Beschreibung: Key Points: The largest stratopause trend is found in the Southern Hemisphere polar region during austral springbased on Microwave Limb Sounder observations. The suppression of gravity waves in UA‐ICON reveals the importance of resolvedwaves and their ability to compensate missing drag. In the polar regions, the simulated stratopause is too warm and the tropical semi‐annual oscillation is about two months out of phase.
    Beschreibung: Deutsche Forschungsgemeinschaft
    Beschreibung: Transregional Collaborative Research Centre
    Beschreibung: GACR
    Beschreibung: MS‐GWaves
    Beschreibung: https://code.mpimet.mpg.de/projects/iconpublic
    Beschreibung: https://doi.org/10.26050/WDCC/UAICON_timesl_ctrl
    Beschreibung: https://doi.org/10.26050/WDCC/UAICON_timesl_nonon
    Beschreibung: https://doi.org/10.26050/WDCC/UAICON_timesl_nosso
    Schlagwort(e): ddc:551.5 ; gravity waves ; elevated stratopause ; middle atmosphere
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-02-26
    Beschreibung: Waste heat recovery plays an important role in energy source management. Organic Rankine Cycle (ORC) can be used to recover low-temperature waste heat. In the present work a sample power plant waste heat was used to operate an ORC. First, two pure working fluids were selected based on their merits. Four possible thermodynamic models were considered in the analysis. They were defined based on where the condenser and evaporator temperatures are located. Four main thermal parameters, evaporator temperature, condenser temperature, degree of superheat and pinch point temperature difference were taken as key parameters. Levelized energy cost values and exergy efficiency were calculated as the optimization criteria. To optimize exergy and economic aspects of the system, Strength Pareto evolutionary algorithm II (SPEA II) was implemented. The Pareto frontier solutions were ordered and chose by TOPSIS. Model 3 outperformed all other models. After evaluating exergy efficiency by mixture mass fraction, R245fa [0.6]/Pentane [0.4] selected as the most efficient working fluid. Finally, every component’s role in determining the levelized energy cost and the exergy efficiency and were discussed. The turbine, condenser and evaporator were found as the costliest components.
    Digitale ISSN: 2227-9717
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-09-15
    Beschreibung: 〈jats:p〉Abstract. The Arctic has warmed more rapidly than the global mean during the past few decades. The lapse rate feedback (LRF) has been identified as being a large contributor to the Arctic amplification (AA) of climate change. This particular feedback arises from the vertically non-uniform warming of the troposphere, which in the Arctic emerges as strong near-surface and muted free-tropospheric warming. Stable stratification and meridional energy transport are two characteristic processes that are evoked as causes for this vertical warming structure. Our aim is to constrain these governing processes by making use of detailed observations in combination with the large climate model ensemble of the sixth Coupled Model Intercomparison Project (CMIP6). We build on the result that CMIP6 models show a large spread in AA and Arctic LRF, which are positively correlated for the historical period of 1951–2014. Thus, we present process-oriented constraints by linking characteristics of the current climate to historical climate simulations. In particular, we compare a large consortium of present-day observations to co-located model data from subsets that show a weak and strong simulated AA and Arctic LRF in the past. Our analyses suggest that the vertical temperature structure of the Arctic boundary layer is more realistically depicted in climate models with weak (w) AA and Arctic LRF (CMIP6/w) in the past. In particular, CMIP6/w models show stronger inversions in the present climate for boreal autumn and winter and over sea ice, which is more consistent with the observations. These results are based on observations from the year-long Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic, long-term measurements at the Utqiaġvik site in Alaska, USA, and dropsonde temperature profiling from aircraft campaigns in the Fram Strait. In addition, the atmospheric energy transport from lower latitudes that can further mediate the warming structure in the free troposphere is more realistically represented by CMIP6/w models. In particular, CMIP6/w models systemically simulate a weaker Arctic atmospheric energy transport convergence in the present climate for boreal autumn and winter, which is more consistent with fifth generation reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5). We further show a positive relationship between the magnitude of the present-day transport convergence and the strength of past AA. With respect to the Arctic LRF, we find links between the changes in transport pathways that drive vertical warming structures and local differences in the LRF. This highlights the mediating influence of advection on the Arctic LRF and motivates deeper studies to explicitly link spatial patterns of Arctic feedbacks to changes in the large-scale circulation. 〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...