ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 1991-01-01
    Beschreibung: Taphonomic processes in deep-water environments differ markedly from those in shallow waters. These differences are illustrated by the preservational style of a large cetacean skeleton lying at the bottom of the Santa Catalina Basin in 1,240 m of water. The degree of skeletal articulation contrasts with that documented in the shallow North Sea where gas-filled, buoyant carcasses disarticulated during flotation. Increased hydrostatic pressure at greater depth is presumed to have prevented the whale carcass from floating and promoted increased levels of preservation. We present a model that relates gas evolution during decay to carcass buoyancy with depth. Application of this model may ultimately allow the degree of skeletal articulation to be used as a rough index of paleobathymetry.
    Print ISSN: 0094-8373
    Digitale ISSN: 0094-8373
    Thema: Geologie und Paläontologie
    Publiziert von Paleontological Society
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1992-07-01
    Print ISSN: 0198-0149
    Digitale ISSN: 1878-2477
    Thema: Biologie , Geologie und Paläontologie , Physik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 135 . pp. 169-177.
    Publikationsdatum: 2018-05-08
    Beschreibung: Mixed cultures of 4 polar diatoms regularly found in Antarctic pack ice were grown over 20 d in closed bottles at high light (200 to 250 umol photons m-2 s-1) and at 0*C in order to investigate growth physiology and biomass production under conditions simulating the sea ice habitat during summer. Species tested were: Chaetoceros cf. neogracile, Fragilariopsiscylindrus, Thalassiosiraantarctica and Porosira pseudodenticulata. Initially, all species grew exponentially, but exponential growth ceased for P. pseudodenticulata and T.antarctica after 6 d, for F.cylindrus after 8 d, and for C. cf. neogracile after 10 d. Slight increases in cell number were observed for all species 2 d later. Peak biomass amounted to 140 ug chl a (850 umol particulate organic carbon, POC) l-1. At the same time, concentrations of dissolved inorganic carbon (DIC) were reduced by 1000 uM, oxygen concentrations increased to 1400 uM, and pH increased to 10.5. At this stage, a substantial decline in plasma-containing cells was recorded for F.cylindrus. C. cf. neogracile accounted for 80%, and C. cf. neogracile and F.cylindrus accounted for 〉95% of total carbon biomass. The carbon isotope composition of POC (expressed as delta13C) increased from -24 to -9 during the experiment. Model calculations showed that diffusive uptake of dissolved CO2 satisfied cellular carbon demand for all species except P. pseudodenticulata at CO2(aq) concentrations 〉0.5 uM, whereas direct HCO3- utilization was observed for C. cf. neogracile below this concentration. Our data confirm that intense photosynthetic carbon assimilation may lead to profound chemical changes in isolated interstitial brine solutions, with significant consequences for sea ice biota. We propose that the capacity to efficiently utilize ambient DIC, possibly mediated by virtue of favorable surface to volume ratios as well as active pathways of inorganic carbon acquisition, favors growth of small diatoms, and may be an important factor driving ice algal species succession during summer blooms. Since only 2 species continued to grow in fresh medium following experimental incubation (C. cf. neogracile and P. pseudodenticulata), differential tolerance to chemical variations may influence the seeding potential of ice algae following release into the open water.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...