ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.
    Keywords: Launch Vehicles and Launch Operations; Statistics and Probability
    Type: M17-5860 , American Institute of Aeronautics and Astronautics (AIAA) Space and Astronautics Forum and Exposition (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-5888 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing Mars Ascent Vehicle (MAV) mass is a priority and minimizing the crew cabin size and mass is one way to do that. Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. This paper explores the sensitivities to trajectory, propulsion, crew cabin size and the benefits and impacts of using a common crew cabin design for the MAV. Results of these trades will be presented along with mass and performance estimates for the selected design.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-5806 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-5884 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: It has been well documented that decisions made in the early stages of Conceptual and Pre-Conceptual design commit up to 80% of total Life-Cycle Cost (LCC) while engineers know the least about the product they are designing [1]. Once within Preliminary and Detailed design however, making changes to the design becomes far more difficult to enact in both cost and schedule. Primarily this has been due to a lack of detailed data usually uncovered later during the Preliminary and Detailed design phases. In our current budget-constrained environment, making decisions within Conceptual and Pre-Conceptual design which minimize LCC while meeting requirements is paramount to a program's success. Within the arena of launch vehicle design, optimizing the ascent trajectory is critical for minimizing the costs present within such concerns as propellant, aerodynamic, aeroheating, and acceleration loads while meeting requirements such as payload delivered to a desired orbit. In order to optimize the vehicle design its constraints and requirements must be known, however as the design cycle proceeds it is all but inevitable that the conditions will change. Upon that change, the previously optimized trajectory may no longer be optimal, or meet design requirements. The current paradigm for adjusting to these updates is generating point solutions for every change in the design's requirements [2]. This can be a tedious, time-consuming task as changes in virtually any piece of a launch vehicle's design can have a disproportionately large effect on the ascent trajectory, as the solution space of the trajectory optimization problem is both non-linear and multimodal [3]. In addition, an industry standard tool, Program to Optimize Simulated Trajectories (POST), requires an expert analyst to produce simulated trajectories that are feasible and optimal [4]. In a previous publication the authors presented a method for combatting these challenges [5]. In order to bring more detailed information into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.
    Keywords: Astrodynamics
    Type: M16-5077 , AIAA Space 2016; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.
    Keywords: Launch Vehicles and Launch Operations
    Type: M16-5537 , AIAA Space 2016 Conference; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...