ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 15 (1987), S. 141-170 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-30
    Description: We applied multiple geochemical tracers ( 87 Sr/ 86 Sr, [Sr], 13 C, and 18 O) to waters and carbonates of the lower Colorado River system to evaluate its paleohydrology over the past 12 Ma. Modern springs in Grand Canyon reflect mixing of deeply derived (endogenic) fluids with meteoric (epigenic) recharge. Travertine (〈1 Ma) and speleothems (2–4 Ma) yield 87 Sr/ 86 Sr and 13 C and 18 O values that overlap with associated water values, providing justification for use of carbonates as a proxy for the waters from which they were deposited. The Hualapai Limestone (12–6 Ma) and Bouse Formation (5.6–4.8 Ma) record paleohydrology immediately prior to and during integration of the Colorado River. The Hualapai Limestone was deposited from 12 Ma (new ash age) to 6 Ma; carbonates thicken eastward to ~210 m toward the Grand Wash fault, suggesting that deposition was synchronous with fault slip. A fanning-dip geometry is suggested by correlation of ashes between subbasins using tephrochronology. New detrital-zircon ages are consistent with the "Muddy Creek constraint," which posits that Grand Wash Trough was internally drained prior to 6 Ma, with limited or no Colorado Plateau detritus, and that Grand Wash basin was sedimentologically distinct from Gregg and Temple basins until after 6 Ma. New isotopic data from Hualapai Limestone of Grand Wash basin show values and ranges of 87 Sr/ 86 Sr, 13 C, and 18 O that are similar to Grand Canyon springs and travertines, suggesting a long-lived spring-fed lake/marsh system sourced from western Colorado Plateau groundwater. Progressive up-section decrease in 87 Sr/ 86 Sr and 13 C and increase in 18 O in the uppermost 50 m of the Hualapai Limestone indicate an increase in meteoric water relative to endogenic inputs, which we interpret to record progressively increased input of high-elevation Colorado Plateau groundwater from ca. 8 to 6 Ma. Grand Wash, Hualapai, Gregg, and Temple basins, although potentially connected by groundwater, were hydrochemically distinct basins before ca. 6 Ma. The 87 Sr/ 86 Sr, 13 C, and 18 O chemostratigraphic trends are compatible with a model for downward integration of Hualapai basins by groundwater sapping and lake spillover. The Bouse Limestone (5.6–4.8 Ma) was also deposited in several hydrochemically distinct basins separated by bedrock divides. Northern Bouse basins (Cottonwood, Mojave, Havasu) have carbonate chemistry that is nonmarine. The 87 Sr/ 86 Sr data suggest that water in these basins was derived from mixing of high- 87 Sr/ 86 Sr Lake Hualapai waters with lower- 87 Sr/ 86 Sr, first-arriving "Colorado River" waters. Covariation trends of 13 C and 18 O suggest that newly integrated Grand Wash, Gregg, and Temple basin waters were integrated downward to the Cottonwood and Mojave basins at ca. 5–6 Ma. Southern, potentially younger Bouse basins are distinct hydrochemically from each other, which suggests incomplete mixing during continued downward integration of internally drained basins. Bouse carbonates display a southward trend toward less radiogenic 87 Sr/ 86 Sr values, higher [Sr], and heavier 18 O that we attribute to an increased proportion of Colorado River water through time plus increased evaporation from north to south. The 13 C and 18 O trends suggest alternating closed and open systems in progressively lower (southern) basins. We interpret existing data to permit the interpretation that the southernmost Blythe basin may have had intermittent mixing with marine water based on 13 C and 18 O covariation trends, sedimentology, and paleontology. [Sr] versus 87 Sr/ 86 Sr modeling suggests that southern Blythe basin 87 Sr/ 86 Sr values of ~0.710–0.711 could be produced by 25%–75% seawater mixed with river water (depending on [Sr] assumptions) in a delta–marine estuary system. We suggest several refinements to the "lake fill-and-spill" downward integration model for the Colorado River: (1) Lake Hualapai was fed by western Colorado Plateau groundwater from 12 to 8 Ma; (2) high-elevation Colorado Plateau groundwater was progressively introduced to Lake Hualapai from ca. 8 to 6 Ma; (3) Colorado River water arrived at ca. 5–6 Ma; and (4) the combined inputs led to downward integration by a combination of groundwater sapping and sequential lake spillover that first delivered Colorado Plateau water and detritus to the Salton Trough at ca. 5.3 Ma. We propose that the groundwater sapping mechanism strongly influenced lake evolution of the Hualapai and Bouse Limestones and that groundwater flow from the Colorado Plateau to Grand Wash Trough led to Colorado River integration.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-22
    Description: Helium isotope ( 3 He/ 4 He) data from geothermal springs in the Colorado Rocky Mountains (western United States) provide unequivocal evidence for a remarkable mantle-to-groundwater connection, with contributions of up to 27% mantle-derived helium. Hydrochemical modeling of springs shows the mantle helium is associated with high p CO 2 with 76 ± 20% of the CO 2 also derived from endogenic (deep geologic) sources. These springs occur preferentially along faults, have highest 3 He/ 4 He values above domains of low mantle velocity, and demonstrate unexpectedly widespread neotectonic mantle degassing. Total CO 2 flux through these springs is 3 x 10 8 mol/yr, a small but persistent contribution to the CO 2 budget and an important baseline for carbon sequestration/leakage studies.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-30
    Description: The geomorphic response to volcanic incursions is spectacularly documented in western Grand Canyon, where numerous Quaternary lava flows dammed the Colorado River. This paper uses new 40 Ar/ 39 Ar ages, geochemistry, paleomagnetism, and field relationships to suggest 17 damming events, requiring major revision to previously published intracanyon flow sequences. From ca. 850 to 400 ka and at ca. 320 ka, numerous lava dams formed near the modern-day Lava Falls area. Starting around 250 ka, major volcanism shifted to the Whitmore Wash area, where additional dams formed. From ca. 200 to 100 ka, cascades flowed over the north rim in areas between Lava Falls and Whitmore Wash to form the youngest set of lava dams. Field observations and new dam reconstructions require a new model for how the Colorado River interacted with ephemeral lava dams in Grand Canyon. Specifically, the structure of lava dams, the position, character, and provenance of basaltic gravels within and above dams, and cooling structures in intracanyon flows suggest that unstable upstream dam portions failed quickly, while stable downstream dam segments were dismantled by the Colorado River more slowly. Time scales of dam removal are hard to assess, but we infer that lava dams that are overlain by monomictic basalt gravels were removed by the river in tens of years to centuries. In contrast, dams overlain by far-traveled gravel may have persisted for millennia.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-29
    Description: Essential features of the previously named and described Miocene Crooked Ridge River in northeastern Arizona (USA) are reexamined using new geologic and geochronologic data. Previously it was proposed that Cenozoic alluvium at Crooked Ridge and southern White Mesa was pre–early Miocene, the product of a large, vigorous late Paleogene river draining the 35–23 Ma San Juan Mountains volcanic field of southwestern Colorado. The paleoriver probably breeched the Kaibab uplift and was considered important in the early evolution of the Colorado River and Grand Canyon. In this paper, we reexamine the character and age of these Cenozoic deposits. The alluvial record originally used to propose the hypothetical paleoriver is best exposed on White Mesa, providing the informal name White Mesa alluvium. The alluvium is 20–50 m thick and is in the bedrock-bound White Mesa paleovalley system, which comprises 5 tributary paleochannels. Gravel composition, detrital zircon data, and paleochannel orientation indicate that sediment originated mainly from local Cretaceous bedrock north, northeast, and south of White Mesa. Sedimentologic and fossil evidence imply alluviation in a low-energy suspended sediment fluvial system with abundant fine-grained overbank deposits, indicating a local channel system rather than a vigorous braided river with distant headwaters. The alluvium contains exotic gravel clasts of Proterozoic basement and rare Oligocene volcanic clasts as well as Oligocene–Miocene detrital sanidine related to multiple caldera eruptions of the San Juan Mountains and elsewhere. These exotic clasts and sanidine likely came from ancient rivers draining the San Juan Mountains. However, in this paper we show that the White Mesa alluvium is early Pleistocene (ca. 2 Ma) rather than pre–early Miocene. Combined 40 Ar/ 39 Ar dating of an interbedded tuff and detrital sanidine ages show that the basal White Mesa alluvium was deposited at 1.993 ± 0.002 Ma, consistent with a detrital sanidine maximum depositional age of 2.02 ± 0.02 Ma. Geomorphic relations show that the White Mesa alluvium is older than inset gravels that are interbedded with 1.2–0.8 Ma Bishop–Glass Mountain tuff. The new ca. 2 Ma age for the White Mesa alluvium refutes the hypothesis of a large regional Miocene(?) Crooked Ridge paleoriver that predated carving of the Grand Canyon. Instead, White Mesa paleodrainage was the northernmost extension of the ancestral Little Colorado River drainage basin. This finding is important for understanding Colorado River evolution because it provides a datum for quantifying rapid post–2 Ma regional denudation of the Grand Canyon region.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-29
    Description: The 12–6 Ma Hualapai Limestone was deposited in a series of basins that lie in the path of the Colorado River directly west of the Colorado Plateau and has been deformed by an en-echelon normal fault pair (Wheeler and Lost Basin Range faults). Therefore, this rock unit represents an opportunity to study the sedimentological and structural setting over which the Colorado River first flowed after integration through western Grand Canyon and Lake Mead. In this study, we quantify the structural geometry of the Hualapai Limestone and separate the deformation into syn- and postdepositional episodes. Both the Wheeler and Lost Basin Range faults were active during Hualapai Limestone deposition, as shown by thickening of strata and fanning of time lines toward half-graben faults that bound the Hualapai subbasins. The structure is characterized by a prominent reverse-drag fold and broad, shallow syncline adjacent to the Lost Basin Range fault, and a small-magnitude reverse-drag fold and short-wavelength normal-drag fold adjacent to the Wheeler fault. We find ~450 m of throw between the footwall and hanging-wall Hualapai Limestone sections, suggesting faulting was ongoing after Hualapai Limestone deposition ceased and during Colorado River incision. To investigate a range of possible fault geometries that may have been responsible for Hualapai Limestone deformation, we compared our structural results against surface deflections calculated by a two-dimensional (2-D) geomechanical model. While nonunique, our results are consistent with a scenario in which the Wheeler fault was surface rupturing, or nearly surface rupturing throughout deposition of the Hualapai Limestone, but was inundated at ca. 6 Ma by coalescing paleolakes in Gregg and Grand Wash Basins as sedimentation kept pace with deformation. In contrast, we find evidence suggesting the Lost Basin Range fault was deeply buried by the Hualapai Limestone and likely propagated upward and laterally to break the surface sometime after 6 Ma. Therefore, we interpret the landscape over which the Colorado River first flowed to be of low relief within the terrain bounded by the Grand Wash Cliffs, the Hiller Mountains, and subtle topographic highs to the north and south of our field area. This original low-relief depositional surface was deflected into the structure exposed today by continuing deformation by the Wheeler and Lost Basin Range faults, allowing for calculation of apparent incision rates of the modern Colorado River drainage system that spatially vary between 33 and 42 m/m.y. in the hanging wall and between 108 and 115 m/m.y. in the footwall. Hanging-wall incision rate values are similar to, but faster than, a previously published point measurement, and footwall values are similar to measured incision rates in the western Grand Canyon, suggesting the Wheeler fault system may resolve as much as ~410 m of Colorado Plateau uplift in the last 6 m.y.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-02
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-24
    Description: Calcite-filled extension veins and shear fractures are preserved in numerous travertine deposits along the western margin of the Albuquerque Basin of the Rio Grande rift. Calcite veins are banded and show geometries suggesting incremental cracking and calcite precipitation. U-series and 234 U model ages from calcite infillings indicate that vein formation was active in the Quaternary, from ca. 2 Ma to ca. 250 ka. Vein orientations are systematic within each deposit and record a dominant extension direction that was horizontal and varied from E-W to NW-SE, consistent with both the regional finite extensional strain in the rift and with the global positioning system (GPS)–constrained deformation field. Three sites contain three orthogonal vein sets that crosscut one another nonsystematically, suggesting alternating times of: (1) regional E-W horizontal extension (dominant), (2) alternating N-S and E-W vertical veins that suggest vertical s 1 and s 2 » s 3 , and (3) horizontal veins that are interpreted to reflect times of highest pore fluid pressures and subequal principal stresses. One site contains conjugate normal faults that also record the dominant E-W extensional tectonic stress. Quaternary extensional strain rates calculated from vein opening for three locations range from 3.2 ± 1.4 x 10 –16 s –1 to 3.2 x 10 -15 ± 2.7 x 10 –16 s –1 , which are up to ~40 times higher than the long-term (Oligocene–Holocene) finite strain rates calculated for different basins of the Rio Grande rift (8.5 x 10 –17 to 4.5 x 10 –16 s –1 ), and up to ~100 times higher than modern strain rates measured by GPS data (3.9 x 10 -17 ± 6.3 x 10 –18 to 4.4 x 10 -17 ± 6.3 x 10 –18 s –1 ). These high Quaternary rates are comparable to modern strain rates measured in the Basin and Range Province and East African Rift. Thus, this paper documents persistent E-W regional extension through the Quaternary in the Rio Grande rift that bridges geologic, paleoseismic, and GPS rates. Anomalously high strain rates in the Quaternary were facilitated by ascent of travertine-depositing CO 2 -rich waters along rift-bounding normal faults, leading to locally very high stain accumulations. These sites also provide examples of natural leakage of deeply sourced CO 2 interacting with regional tectonism, and they emphasize that rift maturation is a highly dynamic process, both spatially and temporally.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-03
    Description: Large-volume travertine deposits in the southeastern Colorado Plateau of New Mexico and Arizona, USA, occur along the Jemez lineament and Rio Grande rift. These groundwater discharge deposits reflect vent locations for mantle-derived CO 2 , which was conveyed by deeply sourced hydrothermal fluid input into springs. U-series dating of stratigraphic sections shows that major aggradation and large-volume (2.5 km 3 ) deposition took place across the region episodically at 700–500 ka, 350–200 ka, and 100–40 ka. These pulses of travertine formation coincide with the occurrence of regional basaltic volcanism, which implies an association of travertine deposits with underlying low-velocity mantle that could supply the excess CO 2 . The calculation of landscape denudation rates based on basalt paleosurfaces shows that travertine platforms developed on local topographic highs that required artesian head and fault conduits. Episodic travertine accumulation that led to the formation of the observed travertine platforms represents conditions when fault conduits, high hydraulic head, and high CO 2 flux within confined aquifer systems were all favorable for facilitating large-volume travertine formation, which was therefore controlled by tectonic activity and paleohydrology. By analogy to the active Springerville–St. Johns CO 2 gas field, the large volumes and similar platform geometries of travertine occurrences in this study are interpreted to represent extinct CO 2 gas reservoirs that were vents for degassing of mantle volatiles into the near-surface system.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-22
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...