ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 897-903 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A sequential sample treatment system is described that permits use of an isotope-ratio mass spectrometer for automated Rittenberg analyses of ammonium salts. This system is based on the design of McInteer and Montoya [Recent Developments in Mass Spectrometry in Biochemistry, Medicine and Environmental Research, edited by A. Frigerio (Elsevier, Amsterdam, 1981), Vol. 7, p. 343]. An x-y table and a set of valves under computer control are used to automatically perform hypobromite oxidations, introduce the N2 thus liberated to the mass spectrometer for isotope-ratio analysis, and effect spent sample pumpaway. Analyses can be performed on samples containing 20 μg of N. When operated with a Nuclide Model 3-60-RMS double-collector mass spectrometer, the standard deviation for measurements at the natural abundance level (12 samples, 50 or 100 μg of N per sample) ranged from 0.0002 to 0.000 06 at. % 15N. Throughput capacity is 100–250 samples per day, and unattended operation can continue for at least three days.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 49 (1998), S. 618-623 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Anaerobic biodegradation of atrazine by the bacterial isolate M91-3 was characterized with respect to mineralization, metabolite formation, and denitrification. The ability of the isolate to enhance atrazine biodegradation in anaerobic sediment slurries was also investigated. The organism utilized atrazine as its sole source of carbon and nitrogen under anoxic conditions in fixed-film (glass beads) batch column systems. Results of HPLC and TLC radiochromatography suggested that anaerobic biotransformation of atrazine by microbial isolate M91-3 involved hydroxyatrazine formation. Ring cleavage was demonstrated by 14CO2 evolution. Denitrification was confirmed by detection of 15N2 in headspace samples of K15NO3-amended anaerobic liquid cultures. In aquatic sediments, mineralization of uniformly ring-labeled [14C]atrazine occurred in both M91-3-inoculated and uninoculated sediment. Inoculation of sediments with M91-3 did not significantly enhance anaerobic mineralization of atrazine as compared to uninoculated sediment, which suggests the presence of indigenous organisms capable of anaerobic atrazine biodegradation. Results of this study suggest that the use of M91-3 in a fixed-film bioreactor may have applications in the anaerobic removal of atrazine and nitrate from aqueous media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 99-102 
    ISSN: 1432-0789
    Keywords: Added N interaction ; Ammonium fixation ; N immobilization ; N mineralization ; Priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was conducted to study the effect of NH 4 + fixation/defixation on the added N interaction (ANI) in three Illinois Mollisols fertilized with 100 or 200 mg N kg-1 soil. A positive ANI was observed in all three soils, which was greater at the higher rate of applied N. However, very little exchange was observed between applied 15NH 4 + and the native clay-fixed NH 4 + , and the ANI observed were attributed largely to microbial immobilization-mineralization. The results suggested that variations in the NH 4 + fixation capacity of soils will not have a significant bearing on the interpretation of data obtained from studies of the ANI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 103-108 
    ISSN: 1432-0789
    Keywords: Added N interaction ; N immobilization ; N mineralization ; Mollisols ; Priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was conducted to study the effect of indigenous inorganic N on the immobilization of applied N and on the occurrence of an added N interaction (ANI). Samples of six Mollisols from Illinois were incubated with 15N-labelled (NH4)2SO4 (100 or 200 mg N kg-1 soil), with or without the use of 0.01 M CaCl2 to extract inorganic N (mainly NO inf3 sup- ) before incubation. From 6 to 49% of the N applied was immobilized, higher percentages being obtained with unextracted soils than with the extracted soils and with the higher rate of N addition. Net mineralization of native N occurred in both the unextracted and extracted soils, but was more extensive in the unextracted soil and increased with the addition of N. The increases were accompanied by a positive ANI, which usually exceeded the amount of applied N immobilized and increased with the rate of addition. The ANI values observed with extracted soils were attributed to increased mineralization of native organic N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 49-52 
    ISSN: 1432-0789
    Keywords: Nitrification ; N immobilization ; N mineralization ; N interaction ; N-Serve ; Nitrapyrin ; Soil N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was conducted to compare the effects of NH inf4 sup+ and NO inf3 sup- on mineralization of N from 15N-labelled vetch (Vicia villosa Rotn) in an Illinois Mollisol, and to determine the effect of a nitrification inhibitor (nitrapyrin) on mineralization of vetch N when used with NH inf4 sup+ . The addition of either NH inf4 sup+ or NO inf3 sup- (100 and 200 mg N kg-1 soil) significantly increased mineralization of vetch N during incubation for 40 days. The effect was greater with NH inf4 sup+ than with NO inf3 sup- , and a further increase occurred in the presence of nitrapyrin (10 mg kg-1 soil). The addition of NO inf3 sup- retarded the nitrification of NH inf4 sup+ -N derived from vetch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1988), S. 32-38 
    ISSN: 1432-0789
    Keywords: Hydrolysable N ; Mineralizable N ; N2-fixation ; Priming effect ; Plant available N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Non-symbiotic N2 fixation was studied under laboratory conditions in two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) incubated in a 15N-enriched atmosphere. N2 fixation was greatest with the Drummer soil (18–122 μg g−1 soil, depending upon the soil treatment) and lowest with the Khurrarianwala soil (4–81 μg g−1 soil). Fixation was increased by the addition of glucose, a close correlation being observed between the amount of glucose added and the amount of N2 fixed in the three soils (r = 0.96). Efficiency of N2 fixation varied with soil type and treatment and was greatest in the presence of added inorganic P. Application of Mo apparently had a negative effect on the amount and efficiency of N2 fixation in all the soils. The percentage of non-symbiotically fixed 15N in potentially mineralizable form (NH 4 + -N released in soil after a 15-day incubation period under anaerobic conditions) was low (2%–18%, depending upon the soil treatment), although most of the fixed N (up to 90%) was recovered as forms hydrolysable with 6N HCl. Recovery in hydrolysable forms was much greater for the fixed N than for the native soil N, indicating that the former was more available for uptake by plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 54-60 
    ISSN: 1432-0789
    Keywords: Biomass N ; Humus fractions ; Hydrolyzable N ; Legume N ; Mineralizable N ; N-mineralization ; 15N-labelled material
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 −)-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 413-420 
    ISSN: 1432-0789
    Keywords: Key words Ammonium analysis ; 15N ; Nitrate ; Nitrite ; Inorganic N ; Soil extract diffusion method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Diffusion methods previously developed for inorganic-N analysis of soil extracts were modified to improve reliability, increase the dynamic range, extend the scope of applications, and simplify the processing of samples for N-isotope analysis. In these methods, the soil extract is treated with MgO, or MgO plus Devarda‘s alloy, in a 473-ml (1-pint) wide-mouth Mason jar to convert NH4 +-N, NO3 –-N, and/or NO2 –-N to NH3-N. The NH3 thereby liberated is collected in H3BO3-indicator solution in a Petri dish suspended from the Mason-jar lid and determined quantitatively by acidimetric titration. With the modifications described, analyses can be performed on 10- to 100-ml samples of water, 0.5MK2SO4, 1MKCl, 2MKCl, or 4MKCl, at temperatures between 20 and 30°C. Recovery from 10 or 20ml was quantitative in 18–80h with up to 4mgN; recovery from 50 or 100ml was quantitative in 3–13 days with up to 2mgN. Removal of H3BO3 for N-isotope analysis by the Rittenberg process was effected using methanol. Mason-jar diffusion methods are much simpler and more convenient than conventional steam distillations. Comparative studies showed that quantitative determinations are more accurate and precise by diffusion than by distillation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 211-220 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; Fertilizer efficiency ; 15N ; Labelled dinitrogen ; Nitrification ; Nitrous oxide ; Urea ; Waterlogged soil ; Water-soluble organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory study was conducted to compare the effects of different N fertilizers on emission of N2 and N2O during denitrification of NO3 – in waterlogged soil. Field-moist samples of Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) were incubated under aerobic conditions for 0, 2, 4, 7, 14, 21, or 42 days with or without addition of unlabelled (NH4)2SO4, urea, NH4H2PO4, (NH4)2HPO4, NH4NO3 (200 or 1000 mg N kg–1 soil), or liquid anhydrous NH3 (1000 mg N kg–1 soil). The incubated soil samples were then treated with 15N-labelled KNO3 (250 mg N kg–1 soil, 73.7 atom% 15N), and incubation was carried out under waterlogged conditions for 5 days, followed by collection of atmospheric samples for 15N analyses to determine labelled N2 and N2O. Compared to samples incubated without addition of unlabelled N, all of the fertilizers promoted denitrification of 15NO3 –. Emission of labelled N2 and N2O decreased in the order: Anhydrous NH3〉urea〈$〉\gg〈$〉 (NH4)2HPO4〉(NH4)2SO4≃NH4NO3≃NH4H2PO4. The highest emissions observed with anhydrous NH3 or urea coincided with the presence of NO2 –, and 15N analyses indicated that these emissions originated from NO2 – rather than NO3 –. Emissions of labelled N2 and N2O were significantly correlated with fertilizer effects on soil pH and water-soluble organic C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 145-150 
    ISSN: 1432-0789
    Keywords: Nitrogen-15 ; Ammonia fixation ; Organic matter-fixed NH3 ; Clay-fixed NH inf4 sup+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The application of liquid anhydrous NH3 to soil leads to chemical fixation of NH3 by organic matter and of NH inf4 sup+ by clay minerals. A laboratory study was conducted to ascertain the biological transformations of newly fixed liquid anhydrous 15NH3 in a Drummer silty clay loam by incubation of the 15N-labelled soil with glucose for 0, 7, 30, and 90 days and by sequential extraction of organic-matter-fixed 15NH3 with 0.15 M Na4P2O7, 0.15 M KOH, 0.1 M NaOH, and acidified dimethyl sulfoxide. About 16% of the 15NH3 injected was fixed, of which 52% was accounted for by clay fixation. The various humic fractions (fulvic acid, humic acid, and humin) were obtained, and the distribution patterns of the fixed 15NH3-N in these fractions were compared. The potential availability of the fixed 15NH3-N was also estimated. The percentage of the 15NH3 recovered as organic-matter-fixed 15NH3 decreased as the length of incubation increased (to 28% after 90 days); the decrease was attributed in part to an increase in the amount recovered as clay-fixed NH inf4 sup+ (from 52 to 64%). Changes in the distribution of the organic-matter-fixed 15NH3-N in the humic fractions included: (1) an increase in the relative amount of the fixed 15NH3 as humic acid in both the Na4P2O7 and KOH extracts, (2) an increase in the percentage of organic-matter-fixed 15NH3-N in the fulvic acid fractions as high-molecular-weight components (determined by dialysis) or as generic fulvic acid (determined by sorption-desorption from XAD-8 resin), and (3) an increase in the percentage of the organic-matter-fixed 15NH3 as humin. The potential availability of the organic-matter-fixed 15NH3-N decreased as the length of the incubation increased, from 22 to 4% over the 90-day incubation period, and was correlated significantly (0.05 level) with Na4P2O7-extractable N. These results suggest that organic-matter-fixed liquid anhydrous NH3 is initially more labile than the native soil N but becomes less labile with time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...