ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space debris 2 (2000), S. 161-198 
    ISSN: 1572-9664
    Keywords: impact risk analysis ; orbital debris environment ; probability of collision
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We present a new derivation of the probability of collisions between spherical satellites occupying Keplerian orbits. The equations follow from the central concept of the instantaneous collision rate, an expression that describes the occurrence of collisions by using a Dirac δ-function. The derivation proceeds by showing how this instantaneous collision rate can be averaged over orbital mean anomaly angles and, additionally, over orbital precession angles to generate expressions appropriate for intermediate and long time scales. Collision rates averaged over mean anomalies tend to be non-zero during relatively brief collision seasons, when the peak collision probability may exceed the long-term average by several orders of magnitude. Derived precession-angle averages have a functional form similar but not identical to the collision probability expression derived using the spatial density approach of Kessler (Icarus, 48: 39–48, 1981), and the two methods have been found to yield numerical results to within 1% for all cases examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9664
    Keywords: optical surveys ; space debris ; space debris environment in GEO ; survey strategies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Since more than 10 years there is evidence that small-size space debris is accumulating in the geosynchronous orbit (GEO), probably as the result of breakups. Two break-ups have been reported in GEO. The 1978 break-up of an EKRAN 2 satellite, SSN 10365, was identified in 1992, and in 1992 a Titan 3C Transtage, SSN 3432, break-up produced at least twenty observable pieces. Subsequently several nations performed optical surveys of the GEO region in the form of independent observation campaigns. Such surveys suffer from the fact that the field of view of optical telescopes is small compared with the total area covered by the GEO ring. As a consequence only a small volume of the orbital element-magnitude-space is covered by each individual survey. Results from these surveys are thus affected by observational biases and therefore difficult to compare. This paper describes the development of a common search strategy to overcome these limitations. The strategy optimizes the sampling for objects in orbits similar to the orbits of the known GEO population but does not exclude the detection of objects with other orbital planes. A properly designed common search strategy clearly eases the comparison of results from different groups and the extrapolation from the sparse (biased) samples to the entire GEO environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-07-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The behavior of objects in Molniya-type orbits and debris objects produced in new breakups are considered. As the majority of breakups in highly eccentric orbits occur in Molniya-type orbits, it is of interest whether, and how, debris objects can interfere with the geosynchronous earth orbit and low earth orbit regions. The behavior of such objects are determined principally by the initial argument of perigee and the initial inclination. The closer the initial orbit's argument of perigee is to 270 deg, and the inclination is to the critical inclination of 63.4 deg, the longer the perigee appears to be locked in the southern hemisphere. The impact on the low earth orbit region is illustrated as the interference of debris objects with the International Space Station's orbit. The possible interactions of Molniya-type debris and with the geostationary ring is demonstrated.
    Keywords: Astronautics (General)
    Type: ; 327-331
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The breakup of a Pegasus hydrazine auxiliary propulsion system in June 1996, officially recognized as the worst satellite breakup in terms of cataloged debris, is considered. The fragmentation event is analyzed and it is discussed how these debris contribute to the current and future near earth space environment. The low altitude of the breakup and the large range of ejection velocities present concerns for other earth orbiting space vehicles, especially the Space Shuttle and the Hubble Space Telescope. In addition to orbit data collected by the U.S. Space Surveillance Network, observations were conducted with ground-based radar observatories. These observations show that the overabundance of debris is not limited to the trackable population, but also extends down to debris with sizes of less than 1 cm. Attempts to detect the debris with optical sensors were less successful.
    Keywords: Astronautics (General)
    Type: ; 289-292
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The orbital debris models developed within the framework of the NASA Johnson Space Center's (JSC's) orbital debris program, are categorized as environment definition and risk assessment models. The EVOLVE, CHAIN and the orbital debris engineering model 1996 (ORDEM96) computer programs determine the past, present and future orbital particulate environment, while the BUMPER and debris assessment software (DAS) computer programs provide a means for evaluating the risks of specific space missions. These models are presented. To support these models and to conduct specialized analyses, NASA/JSC employs a range of auxiliary models, including explosion and collision satellite breakup models, hypervelocity impact ballistic limit models, orbit propagation and decay models, space traffic models and solid rocket motor effluent models.
    Keywords: Astronautics (General)
    Type: ; 225-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: There is a growing consensus among the space debris technical community that limiting the long-term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a cost-effective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would enhance the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that supplements high-altitude ion-drive operations with stored gas, and transitions to ambient gas at lower altitudes. This paper will include realistic numbers on the estimated times needed to deorbit objects from different orbit regimes using drives that either partially or completely take advantage of ambient gas. It will conclude with recommendations on whether this is a viable candidate for future ADR efforts.
    Keywords: Astronautics (General)
    Type: JSC-CN-29636 , International Astronautical Congress; 23-27 Sept. 2013; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: In recent years, several commercial companies have proposed telecommunications constellations consisting of hundreds to thousands of 100-to-300-kg class spacecraft in low Earth orbit (LEO, the region below 2000-km altitude). If deployed, such large constellations (LCs) will dramatically change the landscape of satellite operations in LEO. From the large number of spacecraft and large amount of mass involved, it is clear that the deployment, operations, and frequent de-orbit and replenishment of the proposed LCs could significantly contribute to the existing orbital debris problem. To better understand the nature of the problem, the NASA Orbital Debris Program Office (ODPO) recently completed a parametric study on LCs. The objective was to quantify the potential negative debris-generation effects from LCs to the LEO environment and provide recommendations for mitigation measures. The tool used for the LC study was the ODPOs LEO-to-GEO Environment Debris (LEGEND) numerical simulation model, which has been used for various mitigation and remediation studies in the past. For the LC study, more than 300 scenarios based on different user-specified assumptions and parameters were defined. Selected results from key scenarios are summarized in this paper.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN62753 , International Symposium on Space Technology and Science; Jun 15, 2019 - Jun 21, 2019; Fukui; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...