ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4667–4680, doi:10.1002/ggge.20278.
    Description: Catastrophic collapses of submarine volcanoes have the potential to generate major tsunami, threatening many coastal populations. Recognizing the difficulties surrounding anticipations of these events, quantitative assessment of collapse-prone regions based on detailed morphological, geological, and geophysical mapping can still provide important information about the hazards associated with these collapses. Rumble III is one of the shallowest, and largest, submarine volcanoes found along the Kermadec arc, and is both volcanically and hydrothermally active. Previous surveys have delineated major collapse features at Rumble III; based on time-lapse bathymetry, dramatic changes in the volcano morphology have been shown to have occurred over the interval 2007–2009. Furthermore, this volcano is located just ∼300 km from the east coast of the North Island of New Zealand. Here, we present a geophysical model for Rumble III that provides the locations and sizes of potential weak regions of this volcano. Shipborne and near-seafloor geological and geophysical data collected by the AUV Sentry are used to determine the subsurface distribution of weak and unstable volcanic rocks. The resulting model provides evidence for potentially unstable areas located in the Southeastern flank of this volcano which should be included in future hazard predictions.
    Description: This contribution was funded by the Royal Society of New Zealand by theMarsden Fund (grant GNS1003).
    Description: 2014-04-18
    Keywords: Rumble III ; Geophysical modeling ; Flank collapse ; AUV mapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 84-94, doi:10.1016/j.jvolgeores.2015.07.002.
    Description: We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalts dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.
    Description: Science funding provided by GNS Science Strategic Development Fund.
    Keywords: Lake Rotomahana ; Hydrothermal systems ; Magnetic anomalies ; Gravity anomalies ; Phreatomagmatic eruptions ; Basaltic dikes
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...