ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-06-28
    Description: An investigation of a twin-engine fighter-type airplane model has been conducted in the Langley 16-foot transonic tunnel to determine the effect on drag of a fuselage volume addition incorporating streamline contouring and more extensive boattailing of the engine shrouds. The effect of hot exhausts from the turbojet engines was simulated with hydrogen peroxide gas generators using scaled nonafterburning engine nozzles. Afterbody pressure distributions, base drag coefficients, and forces on the fuselage-tail configurations are presented at Mach numbers from 0.80 to 1.05 angles of attack of 0 degree and 4 degrees for jet pressure ratios from 1 to 7. The effect of jet operation on both the basic and modified models was generally to decrease base pressures but to increase most other afterbody pressures and, therefore, to result in an overall decrease in fuselage-tail component drag. The addition of volume to the basic model reduced the base drag coefficient by 0.0010 with the jets off and 0.0018 at a typical cruise operating condition of a jet pressure ratio of 3, a Mach number of 0.85, and an angle of attack of 4 degrees. The overall jet-off reduction in fuselage-tail component drag due to the volume addition was a maximum of 0.0040 at a Mach number of 0.90 for an angle of attack of 4 degrees.
    Type: NACA-RM-L58C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Type: NACA-RM-L57H15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-17
    Description: An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
    Keywords: Aerodynamics
    Type: NASA-TN-D-842 , L-1554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-11
    Description: An investigation of a vortex-generator configuration on the wings of a l/4-scale model of the X-1 airplane having a 10-percent-thick wing was conducted in the Langley 16-foot transonic tunnel. The effect of the vortex generators was determined by comparing the model aerodynamic characteristics, wing-pressure distributions, and wing-wake patterns for model configurations with and without vortex generators on the wings. Results are presented from tests at 0.1 increments in Mach number from about 0.69 to 0.99, at Reynolds numbers of about 4.1 x 10(exp 6) to 4.7 x 10(exp 6), and through an angle-of-attack range up to 1.5 deg at lower speeds and up to 5 deg at the highest speed. In general, little difference in the aerodynamic characteristics was observed, except at a Mach number of 0.90 where a rearward movement of the shock on the upper surface of the wing with the vortex generators installed resulted in less separation.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-17
    Description: A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
    Keywords: Research and Support Facilities (Air)
    Type: NASA-MEMO-1-10-59L , L-110
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-16
    Description: Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included.
    Keywords: Aerodynamics
    Type: NASA-TN-D-900 , L-1609
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-16
    Description: A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
    Keywords: Aerodynamics
    Type: NASA-MEMO-1-10-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-15
    Description: An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-296 , L-975
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-16
    Description: An investigation was conducted in the Langley 16-foot transonic tunnel to determine the interference from four exhaust jets on the aerodynamic characteristics of a model of a V/STOL airplane. The single- engine four-jet turbofan power plant of the airplane was simulated by inducing tunnel airflow through two large side inlets and injecting the decomposition products of hydrogen peroxide into the internal flow. The heated gas mixture was exhausted through four nozzles located on the sides of the fuselage under the wing, two near the wing leading edge and two forward of the trailing edge; the nozzles were deflected downward 1.5 deg and outward 5.0 deg to simulate cruise conditions. The wing of the model was a clipped delta with leading-edge sweep of 40 deg, aspect ratio of 3.06, taper ratio of 0.218, thickness-chord ratio of 0.09 at the root and 0.07 at the tip, and 10 deg negative dihedral. Aerodynamic and longitudinal stability coefficients were obtained for the model with the tail removed, and for horizontal-tail incidences of 0 deg and -5 deg. Data were obtained at Mach numbers from 0.60 to 1.00, angles of attack from 0 deg to 12 deg, and with jet total-pressure ratios up to 3.1. Jet operation generally caused a decrease in lift, an increase in pitching-moment coefficient, and a decrease in longitudinal stability at subsonic speeds. The jet interference effects on drag were detrimental at a Mach number of 0.60 and favorable at higher speeds for cruising-flight attitudes.
    Keywords: Aerodynamics
    Type: NASA-TM-SX-685 , L-2043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...