ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    Publikationsdatum: 2008-03-06
    Beschreibung: Satellite observations show that the enormous solar proton events (SPEs) in October–November 2003 had significant effects on the composition of the stratosphere and mesosphere in the polar regions. After the October–November 2003 SPEs and in early 2004 significant enhancements of NOx(=NO+NO2) in the upper stratosphere and lower mesosphere in the Northern Hemisphere were observed by several satellite instruments. Here we present global full chemistry calculations performed with the CLaMS model to study the impact of mesospheric NOx intrusions on Arctic polar ozone loss processes in the stratosphere. Several model simulations are preformed with different upper boundary conditions for NOx at 2000 K potential temperature (≈50 km altitude). In our study we focus on the impact of the non-local production of NOx which means the downward transport of enhanced NOx from the mesosphere in the stratosphere. The local production of NOx in the stratosphere is neglected. Our findings show that intrusions of mesospheric air into the stratosphere, transporting high burdens of NOx, affect the composition of the Arctic polar region down to about 400 K (≈17–18 km). We compare our simulated NOx and O3 mixing ratios with satellite observations by ACE-FTS and MIPAS processed at IMK/IAA and derive an upper limit for the ozone loss caused by enhanced mesospheric NOx. Our findings show that in the Arctic polar vortex (Equivalent Lat.〉70° N) the accumulated column ozone loss between 350–2000 K potential temperature (≈14–50 km altitude) caused by the SPEs in October–November 2003 in the stratosphere is up to 3.3 DU with an upper limit of 5.5 DU until end of November. Further we found that about 10 DU but lower than 18 DU accumulated ozone loss additionally occurs until end of March 2004 caused by the transport of mesospheric NOx-rich air in early 2004. In the lower stratosphere (350–700 K≈14–27 km altitude) the SPEs of October–November 2003 have negligible small impact on ozone loss processes until end of November and the mesospheric NOx intrusions in early 2004 yield ozone loss about 3.5 DU, but clearly lower than 6.5 DU until end of March. Overall, the non-local production of NOx is an additional variability to the existing variations of the ozone loss observed in the Arctic.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2004-11-15
    Beschreibung: Chemical ozone loss in the Arctic stratosphere was investigated for the twelve years between 1991 and 2003 employing the ozone-tracer correlation method. For this method, the change in the relation between ozone and a long-lived tracer is considered for all twelve years over the lifetime of the polar vortex to calculate chemical ozone loss. Both the accumulated local ozone loss in the lower stratosphere and the column ozone loss were derived consistently, mainly on the basis of HALOE satellite observations. HALOE measurements do not cover the polar region homogeneously over the course of the winter. Thus, to derive an early winter reference function for each of the twelve years, all available measurements were additionally used; for two winters climatological considerations were necessary. Moreover, a detailed quantification of uncertainties was performed. This study further demonstrates the interaction between meteorology and ozone loss. The connection between temperature conditions and chlorine activation, and in turn, the connection between chlorine activation and ozone loss, becomes obvious in the HALOE HCl measurements. Additionally, the degree of homogeneity of ozone loss within the vortex was shown to depend on the meteorological conditions. Results derived here are in general agreement with the results obtained by other methods for deducing polar ozone loss. Differences occur mainly owing to different time periods considered in deriving accumulated ozone loss. However, very strong ozone losses as deduced from SAOZ for January in winters 1993-1994 and 1995-1996 cannot be identified using available HALOE observations in the early winter. In general, strong accumulated ozone loss was found to occur in conjunction with a strong cold vortex containing a large volume of possible PSC existence (VPSC), whereas moderate ozone loss was found if the vortex was less strong and moderately warm. Hardly any ozone loss was calculated for very warm winters with small amounts of VPSC during the entire winter. This study supports the linear relationship between VPSC and the accumulated ozone loss reported by Rex et al. (2004) if VPSC was averaged over the entire winter period. Here, further meteorological factors controlling ozone loss were additionally identified if VPSC was averaged over the same time interval as that for which the accumulated ozone loss was deduced. A significant difference in ozone loss (of ≈36DU) was found due to the different duration of solar illumination of the polar vortex of at maximum 4 hours per day in the observed years. Further, the increased burden of aerosols in the atmosphere after the Pinatubo volcanic eruption in 1991 significantly increased the extent of chemical ozone loss.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2006-06-20
    Beschreibung: A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. In the troposphere, this isotope composition is determined by "physical'' fractionation effects, that are phase changes (e.g. during cloud formation), diffusion processes (e.g. during evaporation from the ocean), and mixing of air masses. Due to these processes water vapour entering the stratosphere first shows isotope depletions in D/H relative to ocean water, which are ~5 times of those in 18O/16O, and secondly is mass-dependently fractionated (MDF), i.e. changes in the isotope ratio 17O/16O are ~0.52 times of those of 18O/16O. In contrast, in the stratosphere and mesosphere "chemical'' fractionation mechanisms, that are the production of HO due to the oxidation of methane, re-cycling of H2O via the HOx family, and isotope exchange reactions considerably enhance the isotope ratios in the water vapour imported from the troposphere. The model reasonably predicts overall enhancements of the stable isotope ratios in H2O by up to ~25% for D/H, ~8.5% for 17O/16O, and ~14% for 18O/16O in the mesosphere relative to the tropopause values. The 17O/16O and 18O/16O ratios in H2O are shown to be a measure of the relative fractions of HOx that receive the O atom either from the reservoirs O2 or O3. Throughout the middle atmosphere, MDF O2 is the major donator of oxygen atoms incorporated in OH and HO2 and thus in H2O. In the stratosphere the known mass-independent fractionation (MIF) signal in O3 is in a first step transferred to the NOx family and only in a second step to HOx and H2O. In contrast to CO2, O(1D) only plays a minor role in this MIF transfer. The major uncertainty in our calculation arises from poorly quantified isotope exchange reaction rate coefficients and kinetic isotope fractionation factors.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2003-04-03
    Beschreibung: Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92, because during this winter the discrepancy between simulated and experimentally derived ozone loss rates is reported to be the largest. Also during the considered period the vortex was disturbed by a strong warming event with large-scale intrusions of mid-latitude air into the polar vortex, which is quite unusual for this time of the year. The study is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Two methods for determination the ozone loss are investigated, the so-called vortex average approach and the Match method. The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. This should be corrected for in the vortex average method. The simulations further suggest, that these intrusions do not cause a significant bias for the Match method due to effective quality control measures in the Match technique.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2003-06-23
    Beschreibung: High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (~18 km) and 585 K (~24 km). The spatial distribution and the lifetime of the vortex remnants formed after the vortex breakup in May 1997 display different behavior above and below 20 km. Above 20 km, vortex remnants propagate southward (up to 40°N) and are "frozen in'' in the summer circulation without significant mixing. Below 20 km the southward propagation of the remnants is bounded by the subtropical jet. Their lifetime is shorter by a factor of 2 than that above 20 km, owing to significant stirring below this altitude. The behavior of vortex remnants formed in March 2000 is similar but, due to an earlier vortex breakup, dominated during the first 6 weeks after the vortex breakup by westerly winds, even above 20 km. Vortex remnants formed in May 1997 are characterized by large mixing ratios of HCl indicating negligible, halogen-induced ozone loss. In contrast, mid-latitude ozone loss in late boreal spring 2000 is dominated, until mid-April, by halogen-induced ozone destruction within the vortex remnants, and subsequent transport of the ozone-depleted polar air masses (dilution) into the mid-latitudes. By varying the intensity of mixing in CLaMS, the impact of mixing on the formation of ClONO2 and ozone depletion is investigated. We find that the photochemical decomposition of HNO3 and not mixing with NOx-rich mid-latitude air is the main source of NOx within the vortex remnants in March and April 2000. Ozone depletion in the remnants is driven by ClOx photolytically formed from ClONO2. At the end of May 1997, the halogen-induced ozone deficit at 450 K poleward of 30°N amounts to ~12% with ~10% in the polar vortex and ~2% in well-isolated vortex remnants after the vortex breakup.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2005-03-02
    Beschreibung: In-situ measurements of ClO and its dimer carried out during the SOLVE II/VINTERSOL-EUPLEX and ENVISAT Validation campaigns in the Arctic winter 2003 suggest that the thermal equilibrium between the dimer formation and dissociation is shifted significantly towards the monomer compared to the current JPL 2002 recommendation. Detailed analysis of observations made in thermal equilibrium allowed to re-evaluate the magnitude and temperature dependence of the equilibrium constant. A fit of the JPL format for equilibrium constants yields KEQ=3.61x10-27exp(8167/T), but to reconcile the observations made at low temperatures with the existing laboratory studies at room temperature, a modified equation, KEQ=5.47x10-25(T/300)-2.29exp(6969/T), is required. This format can be rationalised by a strong temperature dependence of the reaction enthalpy possibly induced by Cl2O2 isomerism effects. At stratospheric temperatures, both equations are practically equivalent. Using the equilibrium constant reported here rather than the JPL 2002 recommendation in atmospheric models does not have a large impact on simulated ozone loss. Solely at large zenith angles after sunrise, a small decrease of the ozone loss rate due to the ClO dimer cycle and an increase due to the ClO-BrO cycle (attributed to the enhanced equilibrium ClO concentrations) is observed, the net effect being a slightly stronger ozone loss rate.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2005-01-20
    Beschreibung: During the CRISTA-1 mission three pronounced fingerlike structures reaching from the lower latitudes to the mid-latitudes, so-called streamers, were observed in the measurements of several trace gases in early November 1994. A simulation of these streamers in previous studies employing the KASIMA (Karlsruhe Simulation Model of the Middle Atmosphere) and ROSE (Research on Ozone in the Stratosphere and its Evolution) model, both being Eulerian models, show that their formation is due to adiabatic transport processes. Here, the impact of mixing on the development of these streamers is investigated. These streamers were simulated with the CLaMS model (Chemical Lagrangian Model of the Stratosphere), a Lagrangian model, using N2O as long-lived tracer. Using several different initialisations the results were compared to the KASIMA simulations and CRISTA (Cryogenic Infrared Spectrometer and Telescope for the Atmosphere) observations. Further, since the KASIMA model was employed to derive a 9-year climatology, the quality of the reproduction of streamers from such a study was tested by the comparison of the KASIMA results with CLaMS and CRISTA. The streamers are reproduced well for the Northern Hemisphere in the simulations of CLaMS and KASIMA for the 6 November 1994. However, in the CLaMS simulation a stronger filamentation is found while larger discrepancies between KASIMA and CRISTA were found especially for the Southern Hemisphere. Further, compared to the CRISTA observations the mixing ratios of N2O are in general underestimated in the KASIMA simulations. An improvement of the simulations with KASIMA was obtained for a simulation time according to the length of the CLaMS simulation. To quantify the differences between the simulations with CLaMS and KASIMA, and the CRISTA observations, the probability density function technique (PDF) is used to interpret the tracer distributions. While in the PDF of the KASIMA simulation the small scale structures observed by CRISTA are smoothed out due to the numerical diffusion in the model, the PDFs derived from CRISTA observations can be reproduced by CLaMS by optimising the mixing parameterisation. Further, this procedure gives information on small-scale variabilities not resolved by the CRISTA observations.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2011-01-12
    Beschreibung: Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2010-01-11
    Beschreibung: Multi-annual simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) were conducted to study the seasonality of O3 within the stratospheric part of the tropical tropopause layer (TTL), i.e. above θ=360 K potential temperature level. In agreement with satellite (HALOE) and in-situ observations (SHADOZ), CLaMS simulations show a pronounced annual cycle in O3, at and above θ=380 K, with the highest mixing ratios in the late boreal summer. Within the model, this cycle is driven by the seasonality of both upwelling and in-mixing. The latter process occurs through enhanced horizontal transport from the extratropics into the TTL that is mainly driven by the meridional, isentropic winds. The strongest in-mixing occurs during the late boreal summer from the Northern Hemisphere in the potential temperature range between 370 and 420 K. Complementary, the strongest upwelling occurs in winter reducing O3 to the lowest values in early spring. Both CLaMS simulations and Aura MLS O3 observations consistently show that enhanced in-mixing in summer is mainly driven by the Asian monsoon anticyclone.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2012-02-02
    Beschreibung: The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer) JClOOCl is a critical parameter in catalytic cycles destroying ozone (O3) in the polar stratosphere. In the atmospherically relevant wavelength region (λ 〉 310 nm), significant discrepancies between laboratory measurements of ClOOCl absorption cross sections and spectra cause a large uncertainty in JClOOCl. Previous investigations of the consistency of published JClOOCl with atmospheric observations of chlorine monoxide (ClO) and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the ClOOCl formation rate constant krec. Here, we constrain the atmospherically effective JClOOCl independent of krec, using ClO measured in the same air masses before and directly after sunrise during an aircraft flight that was part of the RECONCILE field campaign in the winter 2010 from Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the increase in ClO concentrations is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007), but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009). In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm is not supported by our observations. The observed night-time ClO would not be consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher than the one proposed by Plenge et al. (2005).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...