ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The phase relations of glaucophanic amphiboles have been studied at 18–31 kbar/680–950°C in the synthetic system Na2O−MgO−Al2O3−SiO2−SiF4 (NMASF) using the bulk composition of fluor-glaucophane, Na2Mg3Al2Si8O22F2. Previous experimental studies of glaucophane in the water-bearing system (NMASH) have been hampered by problems of fine grain size (electron microprobe analyses with low oxide totals and contamination by other phases), and consequently good compositional data are lacking. Fluor-amphiboles, on the other hand, generally have much higher thermal stabilities than their hydrous counterparts. By using the fluorine-analogue system NMASF, amphibole crystals sufficiently coarse for electron microprobe analysis have been obtained. Furthermore, NMASH amphibole phase relations are directly analogous to those of the NMASF system because SiF4 fills the role of H2O as the fluid species. High-pressure NMASF amphibole parageneses are comparable to those obtained for NMASH amphiboles under similar pressure-temperature conditions, except that the NMASF solidus was not encountered. In the pressure-temperature range of the NMASF experiments, fluor-glaucophane is unstable relative to glaucophanenyböite-Mg-magnesio-katophorite amphiboles. Variations in synthetic fluor-amphibole composition with P and T are discussed in terms of changes in the thermodynamic activities of the principal amphibole end-members, such as glaucophane (aGp) and nyböite (aNy) using an ideal-mixing-on-sites model. The most glaucophanic amphiboles analysed have aGp=0.50–0.60 and coexist with jadeite and coesite at 30 kbar/800°C. Amphiboles become increasingly nyböitic with decreasing pressure through the NaAlSi-1 exchange, which is the principal variation observed. The most nyböitic amphiboles have aNy =0.65–0.70 and coexist with fluor-sodium-phlogopite and quartz at 21–24 kbar/800–850°C. At 800°C amphiboles are essentially glaucophane-nyböite solid solutions. At 850°C there is some minor displacement along MgMgSi-1, but Mg-magnesio-katophorite activities are very low (〈0.06). Activities of the eight other NMASF amphibole end-members are 〈0.001, except for eckermannite activity which varies from 0.01–0.11. Our results indicate that: (a) synthetic amphiboles mimic the essential stoichiometries observed in blueschist amphiboles; (b) synthetic studies should be relevant to petrologically important high-pressure parageneses and reactions involving glaucophanicamphiboles, sodic pyroxenes, albite and talc; (c) the high-pressure stability limit of fluorglaucophane lies at pressures higher than those reached in this study (31 kbar); (d) in natural systems an approach to glaucophane stoichiometry should be favoured by high water activities as well as high pressures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 130 (1998), S. 176-186 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The equilibrium position of the reaction between sanidine and water to form “sanidine hydrate” has been determined by reversal experiments on well characterised synthetic starting materials in a piston cylinder apparatus. The reaction was found to lie between four reversed brackets of 2.35 and 2.50 GPa at 450 °C, 2.40 and 2.59 GPa at 550 °C, 2.67 and 2.74 GPa at 650 °C, and 2.70 and 2.72 GPa at 680 °C. Infrared spectroscopy showed that the dominant water species in sanidine hydrate was structural H2O. The minimum quantity of this structural H2O, measured by thermogravimetric analysis, varied between 4.42 and 5.85 wt% over the pressure range of 2.7 to 3.2 GPa and the temperature range of 450 to 680 °C. Systematic variation in water content with pressure and temperature was not clearly established. The maximum value was below 6.07 wt%, the equivalent of 1 molecule of H2O per formula unit. The water could be removed entirely by heating at atmospheric pressure to produce a metastable, anhydrous, hexagonal KAlSi3O8 phase (“hexasanidine”) implying that the structural H2O content of sanidine hydrate can vary. The unit cell parameters for sanidine hydrate, measured by powder X-ray diffraction, were a = 0.53366 (±0.00022) nm and c = 0.77141 (±0.00052) nm, and those for hexasanidine were a = 0.52893 (±0.00016) nm and c = 0.78185 (±0.00036) nm. The behaviour and properties of sanidine hydrate appear to be analogous to those of the hydrate phase cymrite in the equivalent barium system. The occurrence of sanidine hydrate in the Earth would be limited to high pressure but very low temperature conditions and hence it could be a potential reservoir for water in cold subduction zones. However, sanidine hydrate would probably be constrained to granitic rock compositions at these pressures and temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 136 (1999), S. 247-257 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Phase equilibria in the ternary system H2O-CO2-NaCl were studied at 800 °C and 9 kbar in internally heated gas pressure vessels using a modified synthetic fluid inclusion technique. The low rate of quartz overgrowth along the `b' and `a' axes of quartz crystals was used to avoid fluid inclusion formation during heating, prior to attainment of equilibrium run conditions. The density of CO2 in the synthetic fluid inclusions was calibrated using inclusions in the binary H2O-CO2 system synthesised by the same method and measured on the same heating-freezing stage. In the two-phase field, two types of fluid inclusions with different densities of CO2 were observed. Using mass balance calculations, these inclusions are used to constrain the miscibility gap and the orientation of two-phase tie-lines in the H2O-CO2-NaCl system at 800 °C and 9 kbar. The equation of state of Duan et al. (1995) approximately describes the P-T section of the ternary system up to about 40 wt% of NaCl. At higher NaCl concentrations the measured solubility of CO2 in the brine is much smaller than predicted by the EOS. A “salting out” effect must be added to the equation of state to include coulomb interaction in the model of Anderko and Pitzer (1993) and Pitzer and Jiang (1996). The new experimental data together with published data up to 5 kbar (Shmulovich et al. 1995) encompass practically all subsolidus crustal P-T conditions. A feature of the new experimental results is the large compositional range in the H2O-CO2-NaCl system occupied by the stability fields of halite + CO2-rich fluid ± H2O-NaCl brine. The prediction of halite stability in equilibrium with CO2-rich fluid in deep-crustal rocks is supported by recent petrological and fluid inclusion studies of granulites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 104 (1990), S. 481-491 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Recent experimental studies have shown that the rates of Al−Si order-disorder and interdiffusion in alkali feldspars at high pressures under dry conditions increase dramatically in the approximate pressure range 7–14 kb, depending on temperature and feldspar composition (Goldsmith 1987, 1988). Enhancement of Al−Si interdiffusion rates is ascribed to the involvement of hydrogen, but the species of hydrogen involved is undetermined. A simple kinetic analysis of the data of Goldsmith (1987) on disordering of dry albite at 800°–950° C and 6–24 kb in the solid media press is consistent with the NaCl pressure cell acting as a proton donor by enhancing dissociation of water in the pressure medium, generating a high $$a_{H^ + } $$ in the experimental environment. The rate constant for disordering of albite is found to increase linearly with the estimated experimental $$a_{H^ + } $$ and with the density of aqueous salt solution, implicating H+ as the rate-enhancing species. Further experimental studies confirm the importance of $$a_{H^ + } $$ . At 16 kb and 850° C, dry albite in sealed Pt capsules in a NaCl cell containing tantalum powder (which reduces H2O to H2) remains highly ordered over the same time that complete disordering would occur in the absence of Ta. H2 cannot therefore be the rate-enhancing species. At 1 kb and 850° C, the extent of Al−Si disorder in albite in direct contact with various NaCl−H2O solutions increases from partially disordered for pure H2O to completely disordered for saturated aqueous NaCl solution, giving strong support to the proton model. SIMS scanning ion imaging of albite run products demonstrates conclusively that solution-reprecipitation is not responsible for enhanced disordering rates. Results of disordering experiments in the solid media apparatus cannot be duplicated in Ar gas media internally-heated pressure vessels, even with the same experimental configuration around the albite-bearing capsules, due to the different proton-buffering capacities of the solid and gas media apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 108 (1991), S. 356-367 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the aureole of the Beinn an Dubhaich granite, Skye, the minimum observed median forsterite-calcite-calcite dihedral angle varies from 110° at the olivinein isograd to about 165° (the equilibrium value) at the granite-limestone contact. Laboratory experiments were performed to investigate the kinetics of this textural change. It was found that the rate of change of the forsterite-calcite-calcite dihedral angle followed approximately first-order kinetics with an activation energy of 48±4 kJ mol-1 for fluid-present conditions, and 90 ±4 kJ mol-1 for fluid-absent conditions. Scanning ion imaging demonstrated that, at least in the early stages of textural change, solution-reprecipitation of the calcite was the rate determining step in the fluid-present runs. The latter result and the value of the activation energy are both consistent with the activation energy found by previous authors for (albeit zeroth order) silicate-aqueous solution solution-reprecipitation reactions. The value of activation energy for the dry data does not correspond to those for either grain boundary or volume diffusion of oxygen or magnesium in forsterite. The mechanism for textural equilibration in the fluid-absent runs is uncertain. Application of the experimentally-derived rate equation to the Beinn an Dubhaich marbles gave activation energies higher than those obtained experimentally. It is concluded from consideration of grain growth effects that activation energies derived from the Beinn an Dubhaich marbles probably reflect textural equilibration under predominantly fluid-absent conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 109 (1991), S. 38-52 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2–8 μm and precision in the range of 1‰ (1 sigma). These analyses represent 11 orders of magnitude reduction in sample size compared to conventional analyses on this material and they are the first report of routinely reproducible precision in the 1 per mil range for analysis of δ18O at this scale. High precision micro-analyses of this sort will permit wide-ranging new applications in stable isotope geochemistry. The analyzed magnetites form nearly spherical grains in a calcite matrix with diopside and monticellite. Textures are characteristic of granulite facies marbles and show no evidence for retrograde recrystallization of magnetite. Magnetites are near to Fe3O4 in composition, and optically and chemically homogeneous. A combination of ion probe plus conventional BrF5 analysis shows that individual grains are homogeneous with δ18O=8.9±1‰ SMOW from the core to near the rim of 0.1–1.2 mm diameter grains. Depth profiling into crystal growth faces of magnetites shows that rims are 9‰ depleted in δ18O. These low δ18O values increase in smooth gradients across the outer 10 μm of magnetite rims in contact with calcite. These are the sharpest intracrystalline gradients measured to date in geological materials. This discovery is confirmed by bulk analysis of 150–350 μm diameter magnetites which average 1.2‰ lower in δ18O than coarse magnetites due to low δ18O rims. Conventional analysis of coexisting calcite yields °18O=18.19, suggesting that bulk Δ18O (Cc-Mt)=9.3‰ and yielding an apparent equilibration “temperature” of 525° C, over 200° C below the temperature of regional metamorphism. Consideration of experimental diffusion data and grain size distribution for magnetite and calcite suggests two contrasting cooling histories. The data for oxygen in calcite under hydrothermal conditions at high P(H2O) indicates that diffusion is faster in magnetite and modelling of the low δ18O rims on magnetite would suggest that the Adirondacks experienced slow cooling after Grenville metamorphism, followed by a brief period of rapid cooling, possibly related to uplift. Conversely, the data for calcite at low P(H2O) show slower oxygen diffusion than in magnetite. Modelling based on these data is consistent with geochronology that shows slow cooling through the blocking temperature of both minerals, suggesting that the low δ18O rims form by exchange with late, low temperature fluids similar to those that infiltrated the rock to serpentinize monticellite and which infiltrated adjacent anorthosite to form late calcite veinlets. In either case, the ion microprobe results indicate that two distinct events are recorded in the post-metamorphic exchange history of these magnetites. Recognition of these events is only possible through microanalysis and has important implications for geothermometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1998-06-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2001-11-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2002-04-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1997-12-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...