ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-06-27
    Description: ALTKAL is a computer program designed to smooth sea surface height data obtained from the GEOS 3 altimeter, and to produce minimum variance estimates of sea surface height and sea surface slopes, along with their standard derivations. The program operates by processing the data through a Kalman filter in both the forward and backward directions, and optimally combining the results. The sea surface height signal is considered to have a geoid signal, modeled by a third order Gauss-Markov process, corrupted by additive white noise. The governing parameters for the signal and noise processes are the signal correlation length and the signal-to-noise ratio. Mathematical derivations of the filtering and smoothing algorithms are presented. The smoother characteristics are illustrated by giving the frequency response, the data weighting sequence and the transfer function of a realistic steady-state smoother example. Based on nominal estimates for geoidal undulation amplitude and correlation length, standard deviations for the estimated sea surface height and slope are 12 cm and 3 arc seconds, respectively.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-CR-141429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Global Positioning System (GPS) navigation is performed by time measurements. A description is presented of a two body model of spacecraft motion. Orbit determination is the process of inferring the position, velocity, and clock offset of the user from measurements made of the user motion in the Newtonian coordinate system. To illustrate the effect of clock errors and the accuracy with which the user spacecraft time and orbit may be determined, a low-earth-orbit spacecraft (Seasat) as tracked by six Phase I GPS space vehicles is considered. The obtained results indicate that in the absence of unmodeled dynamic parameter errors clock biases may be determined to the nanosecond level. There is, however, a high correlation between the clock bias and the uncertainty in the gravitational parameter GM, i.e., the product of the universal gravitational constant and the total mass of the earth. It is, therefore, not possible to determine clock bias to better than 25 nanosecond accuracy in the presence of a gravitational error of one part per million.
    Keywords: SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
    Type: Annual Frequency Control Symposium; Jun 01, 1977 - Jun 03, 1977; Atlantic City, NJ
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...