ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2013-08-31
    Description: Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.
    Keywords: AEROSPACE MEDICINE
    Type: Aerospace Medical Association, Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR units in mm Hg x min x I00 ml/ml) were studied in 14 volunteers before and after 10 wk of endurance training. We assessed the relationship betaleen reflex stimulus (changes in central venous pressure, CVP) and response (FVR) during unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP, 0 to - 2O mm Hg). Changes in CVP during LBNP were estimated from pressure changes in a large peripheral vein in the dependent arm of the subject in the right lateral decubitus position. Maximal oxygen uptake (VO(sub 2max)) and total blood volume increased with endurance training from 37.8 +/- 1.4 ml/min x kg and 63.6 +/- 2.1 ml/kg to 45.3 +/- 1.4 ml/ min x kg and 69.3 +/- 2.8 ml/kg respectively (P less than 0.05). Reflex forearm vasoconstriction occurred in response to a reduction in estimated CVP, and the absolute change in FVR per unit of CVP was reduced from -5.96 +/- 0.79 to -4.06 +/- 0.52 units x mm/ Hg (P less than 0.05) following exercise training but was unchanged from -6.10 to 0.57 to -6.22 +/- 0.94 units x mm/ Hg for the time control group (N = 7). Resting values for FVR were similar before and after exercise training; however, resting estimated CVP was elevated from 9.5 +/- 0.5 mm x Hg before training to 11.3 +/- 0.6 mm x Hg after training. The reduction in sensitivity of the cardiopulmonary baroreflex control of FVR was linearly related to the increase in blood volume (r = 0.65, P less than 0.05). suggesting that diminished cardiopulmonary baroreflex control of FVR in physically fit individuals is related, in part, to a training-induced blood volume expansion.
    Keywords: Aerospace Medicine
    Type: NASA-TM-112285 , NAS 1.15:112285 , Medcine and Science in Sports and Exercise (ISSN 0195-9131); 23; 12; 1367-1372
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...