ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 15 (1982), S. 31-35 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 336 (1988), S. 651-656 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two different genetically engineered amino-acid substitutions designed to interact with α-helix dipoles in T4 lysozyme are shown to increase the thermal stability of the protein. Crystallographic analyses of the mutant lysozyme structures suggest that the stabilization is due to electrostatic ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 23 (1984), S. 2157-2172 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of organic solvents on the 31P-mr chemical shifts of various phosphate diesters have been investigated in water and mixed-organic solvent systems. The addition of organic solvents to cyclic phosphates and to diethyl phosphate causes large upfield shifts of the phosphorus resonance which are attributed to solvent-induced changes in the local hydration of the phosphodiester group. This is consistent with the fact that there is an inverse correlation between the hydrogen-bond-donating ability of the solvents and the magnitude of the shifts they induce. Other possible interpretations, such as solvent-induced ion pairing and solvent-induced conformational changes, appear to be eliminated. Fourier-transform ir study of the cyclic nucletides reveals that there are also large solvent-induced shifts in the frequency of the antisymmetric OPO stretching frequency, and a comparison of the two types of measurements indicates that there is a linear correlation between shifts observed in the ir and in the 31P-nmr spectra. With UpU, the solvent-induced 31P-nmr shifts are ∼3 times smaller than those observed with the cyclic phosphates and the solvent-induced shift of the OPO band is reduced (factor of ∼1.7) as compared with the cyclic phosphates. With the single-stranded polynuclotides, poly(C) and poly(U), the solvent-induced shifts in both the nmr and ir are quite small (∼0.1 ppm and ∼1 cm-1). The very small solvent effects observed with poly(U) and poly(C) are attributed to a combination of steric effects and a polyelectrolyte effect which maintains a high density of counterions with waters of hydration in the vicinity of the charged backbone and makes the phosphates much less susceptible to solvent-induced changes in hydration.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: It was previously shown that the two replacements Gly 77 ↠ Ala (G77A) and Ala 82 ↠ Pro (A82P) increase the thermostability of phage T4 lysozyme at pH 6.5. Such replacements are presumed to restrict the degrees of freedom of the unfolded protein and so decrease the entropy of unfolding [B. W. Matthews, H. Nicholson, and W. J. Becktel (1987) Proceedings of the National Academy of Science USA Vol. 84, pp. 6663-6667].To further test this approach, three additional replacements - G113A, K60P and A93P -  have been constructed. On the basis of model building, each of these three replacements was judged to be less than optimal because it would tend to introduce unfavorable van der Waals contacts with neighboring parts of the protein. The presence of such contacts was verified for G113A and K60P by conformational adjustments seen in the crystal structures of these mutant proteins. In the case of G113A there are backbone conformational changes of 0.5-1.0 Å in the short α-helix, 108-113, that includes the site of substitution. In the case of K60P the pyrrolidine ring shows evidence of strain. The thermal stability of each of the three variants at both pH 2.0 and pH 6.5 was found to be very close to that of wild-type lysozyme. The results suggest that the procedure used to predict sites for both Xaa ↠ Pro and Gly ↠ Ala is, in principle, correct. At the same time, the increase in stability expected from substitutions of this type is modest, and can easily be offset by strain associated with introduction of the alanine or proline. This means that the criteria used to select substitutions that will increase thermostability have to be stringent at least. In the case of T4 lysozyme this severely limits the number of sites. The analysis reveals a significant discrepancy between the conformational energy surface predicted for the residue preceding a proline and the conformations observed in crystal structures. © 1992 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...