ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 1992-07-17
    Description: Nitric oxide (NO) is a cytotoxic agent of macrophages, a messenger molecule of neurons, and a vasodilator produced by endothelial cells. NO synthase, the synthetic enzyme for NO, was localized to rat penile neurons innervating the corpora cavernosa and to neuronal plexuses in the adventitial layer of penile arteries. Small doses of NO synthase inhibitors abolished electrophysiologically induced penile erections. These results establish NO as a physiologic mediator of erectile function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnett, A L -- Lowenstein, C J -- Bredt, D S -- Chang, T S -- Snyder, S H -- DA-00266/DA/NIDA NIH HHS/ -- DK-19300/DK/NIDDK NIH HHS/ -- MH-18501/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):401-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1378650" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/antagonists & inhibitors/biosynthesis ; Animals ; Arginine/analogs & derivatives/pharmacology ; Dose-Response Relationship, Drug ; Male ; Nerve Fibers/metabolism ; *Nitric Oxide ; Nitric Oxide Synthase ; Nitroarginine ; Penile Erection/drug effects/*physiology ; Penis/metabolism ; Rats ; Urethra/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1992-08-07
    Description: Immune responses in lymphocytes require cellular accumulation of large amounts of calcium (Ca2+) from extracellular sources. In the T cell tumor line Jurkat, receptors for the Ca(2+)-releasing messenger inositol 1,4,5-trisphosphate (IP3) were localized to the plasma membrane (PM). Capping of the T cell receptor-CD3 complex, which is associated with signal transduction, was accompanied by capping of IP3 receptors. The IP3 receptor on T cells appears to be responsible for the entry of Ca2+ that initiates proliferative responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, A A -- Steiner, J P -- Klein, M G -- Schneider, M F -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- MH-18501/MH/NIMH NIH HHS/ -- P01-HL27867/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 Aug 7;257(5071):815-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323146" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/metabolism ; Antigens, CD3 ; Antigens, Differentiation, T-Lymphocyte/analysis/*metabolism ; Burkitt Lymphoma ; Calcium/*metabolism ; *Calcium Channels ; Cell Line ; Cell Membrane/*metabolism ; Cells, Cultured ; Concanavalin A/pharmacology ; Fluorescent Antibody Technique ; Humans ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; Kinetics ; Receptors, Antigen, T-Cell/analysis/*metabolism ; Receptors, Cell Surface/analysis/*metabolism ; *Receptors, Cytoplasmic and Nuclear ; Second Messenger Systems ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-27
    Description: Schizophrenia is a debilitating mental illness that affects 1% of the population. Despite intensive study, its molecular etiology remains enigmatic. Like many common diseases, schizophrenia is multifactorial in origin, with both genetic and environmental contributions likely playing an important role in the manifestation of symptoms. Recent advances based on pharmacological studies, brain imaging analyses, and genetic research are now converging on tantalizing leads that point to a central role for several neurotransmitters, including dopamine, glutamate, and serotonin, that may interface with neurodevelopmental defects reflecting disease-related genetic aberrations. Here, we provide a brief overview of the parallel approaches being used to identify the molecular causes of schizophrenia and discuss possible directions for future research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawa, Akira -- Snyder, Solomon H -- DA-00074/DA/NIDA NIH HHS/ -- DA-00266/DA/NIDA NIH HHS/ -- MH-18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):692-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976442" target="_blank"〉PubMed〈/a〉
    Keywords: Antipsychotic Agents/pharmacology/therapeutic use ; Brain/metabolism/pathology ; Chromosome Mapping ; Disease Susceptibility ; Genetic Predisposition to Disease ; Humans ; Mutation ; Neurotransmitter Agents/metabolism ; Polymorphism, Genetic ; Receptors, Neurotransmitter/metabolism ; Risk Factors ; Schizophrenia/*etiology/genetics/metabolism/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawa, Akira -- Snyder, Solomon H -- New York, N.Y. -- Science. 2005 Nov 18;310(5751):1128-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA. asawa1@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16293746" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/*genetics/physiology ; Affective Disorders, Psychotic/enzymology/*genetics ; Carrier Proteins/physiology ; Cyclic AMP/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 4 ; Enzyme Activation ; Humans ; Mutation ; Nerve Tissue Proteins/*genetics/physiology ; Protein Binding ; Schizophrenia/*genetics ; Signal Transduction ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-18
    Description: The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saiardi, Adolfo -- Bhandari, Rashna -- Resnick, Adam C -- Snowman, Adele M -- Snyder, Solomon H -- DA00074/DA/NIDA NIH HHS/ -- MH068830-02/MH/NIMH NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2101-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604408" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Escherichia coli Proteins/metabolism ; Humans ; Inositol Phosphates/*metabolism ; Kinetics ; Magnesium/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/*metabolism ; Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Protein Kinases/genetics/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2005-12-24
    Description: Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are two major inflammatory mediators. Here we show that iNOS specifically binds to COX-2 and S-nitrosylates it, enhancing COX-2 catalytic activity. Selectively disrupting iNOS-COX-2 binding prevented NO-mediated activation of COX-2. This synergistic molecular interaction between two inflammatory systems may inform the development of anti-inflammatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangwon F -- Huri, Daniel A -- Snyder, Solomon H -- DA000266/DA/NIDA NIH HHS/ -- DA00074/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 23;310(5756):1966-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16373578" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotin/metabolism ; Catalysis ; Cell Line ; Cyclooxygenase 2/*metabolism ; Cysteine/metabolism ; Dinoprostone/metabolism ; Enzyme Activation ; Humans ; Mice ; Nitric Oxide Donors/metabolism ; Nitric Oxide Synthase Type II/*metabolism ; Nitroso Compounds/*metabolism ; Protein Binding ; S-Nitrosoglutathione/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snyder, Solomon H -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1744-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA. ssnyder@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990538" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/*metabolism ; Animals ; Brain/cytology/metabolism/physiopathology ; Epilepsy/metabolism/*physiopathology ; Humans ; Intracellular Signaling Peptides and Proteins/*metabolism ; Ligands ; Membrane Proteins/*metabolism ; Neurons/metabolism ; Protein Binding ; Rats ; Receptors, AMPA/*metabolism ; Synapses/*metabolism ; Synaptic Membranes/metabolism ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1988-03-18
    Description: The effects of lithium on inositol phosphate metabolism may account for the therapeutic actions of lithium in affective disorder. Muscarinic stimulation of the phosphoinositide system blocks synaptic inhibitory actions of adenosine in the hippocampal slice. At therapeutic concentrations, lithium diminished this muscarinic response, whereas rubidium, which does not affect phosphoinositide metabolism, had no effect. A dampening of phosphoinositide-mediated neurotransmission may explain the normalizing effects of lithium in treating both mania and depression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worley, P F -- Heller, W A -- Snyder, S H -- Baraban, J M -- DA-00266/DA/NIDA NIH HHS/ -- MH-18501/MH/NIMH NIH HHS/ -- MH-42323/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Mar 18;239(4846):1428-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2831626" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/pharmacology ; Carbachol/pharmacology ; Enzyme Activation/drug effects ; Hippocampus/drug effects/*physiology ; Inositol Phosphates/metabolism ; Kinetics ; Lithium/*pharmacology ; Oxotremorine/analogs & derivatives/pharmacology ; Phorbol Esters/pharmacology ; Phosphatidylinositols/*metabolism ; Protein Kinase C/metabolism ; Receptors, Muscarinic/drug effects/*physiology ; Synapses/physiology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-01
    Description: The neurotransmitter functions of nitric oxide are dependent on dynamic regulation of its biosynthetic enzyme, neuronal nitric oxide synthase (nNOS). By means of a yeast two-hybrid screen, a 10-kilodalton protein was identified that physically interacts with and inhibits the activity of nNOS. This inhibitor, designated PIN, appears to be one of the most conserved proteins in nature, showing 92 percent amino acid identity with the nematode and rat homologs. Binding of PIN destabilizes the nNOS dimer, a conformation necessary for activity. These results suggest that PIN may regulate numerous biological processes through its effects on nitric oxide synthase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaffrey, S R -- Snyder, S H -- DA00074/DA/NIDA NIH HHS/ -- GM-07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):774-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864115" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism/pharmacology ; Cell Line ; Cyclic GMP/metabolism ; Dimerization ; *Drosophila Proteins ; Dyneins ; Enzyme Inhibitors/chemistry/*metabolism/pharmacology ; Humans ; Molecular Sequence Data ; Molecular Weight ; Neurons/enzymology ; Nitric Oxide Synthase/*antagonists & inhibitors/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1996-07-26
    Description: B and T lymphocytes undergoing apoptosis in response to anti-immunoglobulin M antibodies and dexamethasone, respectively, were found to have increased amounts of messenger RNA for the inositol 1,4,5-trisphosphate receptor (IP3R) and increased amounts of IP3R protein. Immunohistochemical analysis revealed that the augmented receptor population was localized to the plasma membrane. Type 3 IP3R (IP3R3) was selectively increased during apoptosis, with no enhancement of type 1 IP3R (IP3R1). Expression of IP3R3 antisense constructs in S49 T cells blocked dexamethasone-induced apoptosis, whereas IP3R3 sense, IP3R1 sense, or IP3R1 antisense control constructs did not block cell death. Thus, the increases in IP3R3 may be causally related to apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, A A -- Soloski, M J -- Sharp, A H -- Schilling, G -- Sabatini, D M -- Li, S H -- Ross, C A -- Snyder, S H -- AI-20922/AI/NIAID NIH HHS/ -- AI-37934/AI/NIAID NIH HHS/ -- MH43040/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):503-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662540" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; B-Lymphocytes/*cytology/metabolism ; Base Sequence ; Calcium/metabolism ; Calcium Channels/genetics/immunology/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; DNA, Antisense ; Dexamethasone/pharmacology ; Immunoblotting ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; Mice ; Molecular Sequence Data ; Receptors, Cytoplasmic and Nuclear/genetics/immunology/*metabolism ; T-Lymphocytes/*cytology/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...