ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Keywords
Publisher
  • 1
    Publication Date: 2019-08-27
    Description: The deep-towed Argo I optical/acoustical vehicle and a geographic information system (GIS) have been used to establish the abundance, widths, and spatial distribution of fissures, as well as the relative age distribution of lavas along the narrow (less than 500 m wide) axial zone of the East Pacific Rise (EPR) from 9 deg 12 min to 9 deg 54 min N. On a second-order scale (approximately 78 km long), wider but less numerous fissures are found in the northern portion of the survey area; this changes to narrower, more abundant fissures in the south. A profile of the cumulative width added by fissures to the axial zone exhibits minima in three areas along strike (near 9 deg 49 min, 9 deg 35 min, and 9 deg 15 min N), where the most recent eruptions have occurred above sites of magmatic injection from the upper mantle, filling and covering older fissures. On a fourth-order scale (5-15 km long) the mean density of fissuring on a given segment is greater where relative axial lava age is greater. Fissure density also correlates with hydrothermal vent abundance and type. Increased cracking toward segment tips is observed at the second-order scale, whereas fourth-order segments tend to be more cracked in the middle. Cracking on a fourth-order scale may be driven by the propagation of dikes, rather than by the far-field plate stresses. The above relations constrain the model of Haymon et al. (1991) in which individual fourth-order segments are in different phases of a volcanic-hydrothermal-tectonic cycle.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; B4; p. 6097-6020
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-05
    Description: Highlights: • The geochemistry of a Cretaceous Tongan fore-arc basalt (FAB) suite is reported. • The Tonga FAB suite is very similar to the Poya Terrane basalts of New Caledonia. • Similar geochemistry to IBM FAB but not associated with subduction initiation • Possibly a remnant of the hypothesized back-arc East New Caledonia Basin Abstract: The Tonga fore-arc preserves a complex history of subduction initiation, back-arc basin formation and arc volcanism which has extended from the Cretaceous to the present. In this paper, we discuss the geochemistry of a Cretaceous basalt/dolerite/gabbro suite recovered in two dredges from the Tonga fore-arc at ~ 19°S. The geochemistry of the Tonga fore-arc suite is unlike that of the uniformly depleted MORB basalts of the subducting Pacific Plate and therefore is unlikely to be accreted from Pacific Cretaceous crust. The ~ 102 Ma age obtained for one Tongan fore-arc dolerite is contemporaneous with a major phase of Cretaceous subduction-related volcanism, recorded both in detrital zircon age populations and associated volcanics from New Caledonia and New Zealand. We believe that the Tonga fore-arc basalts are a remnant of a hypothesized, once extensive Cretaceous back-arc basin, called the East New Caledonia Basin, which we propose to have existed from ~ 102 to 50 Ma. The allochthonous Poya Terrane of New Caledonia is geochemically very similar to the Tonga fore-arc basalts and represents a younger (~ 84–55 Ma) remnant of the same basin. Subduction-related Cretaceous volcanics from the SW Pacific, representing both arc and back-arc settings, all appear to have similar Zr/Nb values, suggesting a common mantle component in their petrogenesis. The Tonga fore-arc basalts are also similar to fore-arc basalts recovered from the Izu-Bonin-Mariana fore-arc, but unlike these basalts they are not associated with subduction initiation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-14
    Description: Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...