ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Source
Language
Years
  • 1
    Publication Date: 2023-06-17
    Description: Paleo-shorelines on continental shelves give insights into the complex development of coastlines during sealevel cycles. This study investigates the geologic development of the Limpopo Shelf during the last sealevel cycle using multichannel seismic and acoustic datasets acquired on the shelf in front of the Limpopo River mouth. A detailed investigation of seismic facies, shelf bathymetry, and a correlation to sea level revealed the presence of numerous submerged shorelines on the shelf. These shorelines are characterized by distinct topographic ridges and are interpreted as coastal dune ridges that formed in periods of intermittent sealevel still-/slowstand during transgression. The shorelines are preserved due to periods of rapid sealevel rise (melt water pulses) that led to the overstepping of the dune ridges as well as due to early cementation of accumulated sediments that increased the erosive resistance of the ridges. The high along-shelf variability of the submerged dune ridges is interpreted as a result of pre-existing topography affecting shoreline positions during transgression. The pre-existing topography is controlled by the underlying sedimentary deposits that are linked to varying fluvial sediment input at different points on the shelf. The numerous prominent submerged dune ridges form barriers for the modern fluvial sediment from the Limpopo River and dam sediment on the inner shelf. They may also facilitate along-shelf current-induced sediment transport.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551 ; Limpopo Shelf ; Geology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.
    Keywords: 551 ; southern North Sea ; Quarternary ; tunnel valley formation ; salt-induced faults
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...