ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2024-02-01
    Description: Regime shifts in the diatom–dinoflagellate composition have occurred in the Baltic Sea (BS) and Bohai Sea (BHS) under eutrophication and have affected the entire coastal ecosystem, damaging the regulatory, provisioning, cultural, and supporting service functions of marine ecosystems. Therefore, finding a solution to restore the balance of phytoplankton community composition and mitigate eutrophication is of utmost importance. In this study, the Driver (per capita gross domestic product)-Pressure (terrestrial inputs)-State (seawater environmental parameters)-Impact (proportions of diatoms and dinoflagellates)-Response (eutrophication governance projects) framework served as a guide for our analysis of the causal relationship among various environmental components in the coastal system. The relevant data in BS and BHS spanning from the 1950s to the 2010s were collected and used to construct a diatom–dinoflagellate composition single index, which allowed us to identify the shifts in regimes (mutation points and phases) of the diatom–dinoflagellate composition and environmental factors using sequential t-test analysis. We also identified key environmental factors that moderated the diatom–dinoflagellate composition using redundancy analysis and analyzed the partial effects of the main environmental factors on the diatom–dinoflagellate composition using a generalized additive model. Finally, the regulation of the eutrophication governance investment on diatom–dinoflagellate composition was investigated. We found that (1) BS is a “time machine,” with coastal eutrophication governance and regime shift of diatom–dinoflagellate composition and environmental factors two decades earlier than that in BHS; (2) in BS, the key moderation factor of diatom proportion is SiO3-Si and those of dinoflagellates are sea surface salinity and N:P ratio; in BHS, the key moderation factors of diatom proportion are PO4-P and Si:N ratio and those of dinoflagellate are dissolved inorganic nitrogen and N:P and Si:P ratios; (3) it is projected that BHS will enter its recovery phase from eutrophication after mid-2020s. In summary, the N/P/Si stoichiometric relationships should be given greater consideration, with the exception of the “dose-response” relationship in both sea areas. Our results indicate an urgent need for an improved mechanistic understanding of how phytoplankton biodiversity changes in response to changes in nutrient load and how we should ultimately deal with the challenges that arise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The sources, distribution, and fate of particulate organic matter (POM) in estuaries are dynamic and complex, influenced by highly intensive human activities and high productivity. In this study, water samples were collected along the Changjiang Estuary salinity gradient and adjacent sea (CEAS) in February and May 2017. Particulate organic carbon (POC), particulate nitrogen (PN), the δ13C isotope values and major biochemical constituent (total particulate amino acids, TPAA) were measured. The concentrations of POC, PN, and TPAA showed an overall decreasing trend from the river end-member to the open sea; however, their maximum always occurred around the turbidity maximum zone (TMZ). Concentrations of POC and TPAA showed a negative correlation with salinity and a positive correlation with chlorophyll a, indicating that the variation in POM concentrations and composition was mainly controlled by both terrigenous input and in situ phytoplankton production. The δ13C values gradually increased from the river mouth to the open sea in both winter and spring, in contrast to the molar C/N, reflecting the transition from terrestrial POC to phytoplankton-derived fresh POC with increasing salinity. Major biochemical indicators of TPAA/POC (%) and the degradation index (DI), showed a gradual shift towards more bioactive POM with increasing salinity in spring, although low TPAA/POC (%) values appeared within the TMZ. In spring, POC reactivity was higher than in winter. The proportions of glycine (Gly) and serine (Ser) were higher in winter, indicating that POM had suffered extensive degradation. Based on a two end-member mixing model, the contribution of marine POC in spring (53 ± 14%) was significantly greater than in winter (39 ± 19%), indicating that phytoplankton-derived POM was dominant in spring, associated with the increase in phytoplankton biomass from winter to spring. Based on mass balance, a box model showed evidence of a net POC sink over the Changjiang estuary and its adjacent East China Sea shelf in both winter and spring, with a net POC budget of 20.49 ± 7.01 and 15.87 ± 6.57 kmol s−1, respectively. Results illustrate that the spatio-temporal distribution of POM varies distinctively and will further affect the variability in its composition and reactivity in the CEAS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...