ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Beta-D-Xylopyranosyl-(4 - 2 )-oligonucleotides containing adenine and thymine as nucleohases were synthesized as a part of a systematic study of the pairing properties of pentopyranosyl oligonucleotides. Contrary to earlier expectations based on qualitative conformational criteria, Beta-D-xylopyranosyl(4 - 2 )- oligonucleotides show Watson-Crick pairing comparable in strength to that shown by pyranosyl-RNA.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Helvetica Chimica Acta; 85; 399-416
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. Statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about two weeks in a three month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around two weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the North-South and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 % and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local atmosphere resulted in a comparable correlation coefficient of about 33 %.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The Cretaceous period (similar to 145-65 m.y. ago) was characterized by intervals of enhanced organic carbon burial associated with increased primary production under greenhouse conditions. The global consequences of these perturbations, oceanic anoxic events (OAEs), lasted up to 1 m.y., but short-term nutrient and climatic controls on widespread anoxia are poorly understood. Here, we present a high-resolution reconstruction of oceanic redox and nutrient cycling as recorded in subtropical shelf sediments from Tarfaya, Morocco, spanning the initiation of OAE2. Iron-sulfur systematics and biomarker evidence demonstrate previously undescribed redox cyclicity on orbital time scales, from sulfidic to anoxic ferruginous (Fe-rich) water-column conditions. Bulk geochemical data and sulfur isotope modeling suggest that ferruginous conditions were not a consequence of nutrient or sulfate limitation, despite overall low sulfate concentrations in the proto-North Atlantic. Instead, fluctuations in the weathering influxes of sulfur and reactive iron, linked to a dynamic hydrological cycle, likely drove the redox cyclicity. Despite the potential for elevated phosphorus burial in association with Fe oxides under ferruginous conditions on the Tarfaya shelf, porewater sulfide generation drove extensive phosphorus recycling back to the water column, thus maintaining widespread open-ocean anoxia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-24
    Description: The densities of aqueous solutions in the systems CaCl2−NaCl−H2O and MgCl2−NaCl−H2O were determined experimentally at temperatures from (298.15 to 523.15) K, pressures up to 70 MPa and over a range of composition at ionic strengths from (0.1 to 18) mol·kg−1. The vibrating-tube densimeters used for the experimental measurements have an accuracy on density better than 9.9·10−5 g·cm−3. The mean apparent molar volumes of the mixtures calculated from the experimental data permitted a parametrization of the Pitzer equation for mixed electrolyte solutions within the entire range of temperatures, pressures, and compositions covered by this study. The parametrization of the Pitzer model for the pure binary salt aqueous solutions CaCl2−H2O and MgCl2−H2O was also refined based on new experimental and literature data. These models were used to evaluate the partial molar volumes and limiting partial molar volumes of components in aqueous mixtures of electrolytes. Using the refined models for the binary systems, Young’s mixing rule can also be used for evaluation of the mean apparent volume of electrolyte mixtures with accuracy similar to the Pitzer model and, consequently, for calculation of the densities of mixed salt solutions from the properties of binary electrolyte solutions. As an important application, we could show that the pressure effect on the estimates of the activity coefficients of components in complex aqueous electrolyte solutions can now be evaluated. Therefore, shifts in equilibrium calculations due to pressure can quantitatively be addressed when modeling geothermal, hydrothermal, or other natural or engineering aqueous systems at elevated temperatures and pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Freshwater discharge is one main element of the hydrological cycle that physically and biogeochemically connects the atmosphere, land surface, and ocean and directly responds to changes in pCO2. Nevertheless, while the effect of near-future global warming on total river runoff has been intensively studied, little attention has been given to longer-term impacts and thresholds of increasing pCO2 on changes in the partitioning of surface and subsurface flow paths across broad climate zones. These flow paths and their regional responses have a significant role for vegetation, soils, and nutrient leaching and transport. We present climate simulations for modern, near-future (850 ppm), far-future (1880 ppm), and past Late Cretaceous (1880 ppm) pCO2 levels. The results show large zonal mean differences and the displacement of flows from the surface to the subsurface depending on the respective pCO2 level. At modern levels the ratio of deeper subsurface to near-surface flows for tropical and high northern latitudes is 1:4.0 and 1:0.5, respectively, reflecting the contrast between permeable tropical soils and the areas of frozen ground in high latitudes. There is a trend toward increased total flow in both climate zones at 850 ppm, modeled to be increases in the total flow of 34 and 51%, respectively, with both zones also showing modest increases in the proportion of subsurface flow. Beyond 850 ppm the simulations show a distinct divergence of hydrological trends between mid- to high northern latitudes and tropical zones. While total wetting reverses in the tropics beyond 850 ppm due to reduced precipitation, with average zonal total runoff decreasing by 46% compared to the 850 ppm simulation, the high northern latitude zone becomes slightly wetter with the average zonal total runoff increasing by a further 3%. The ratio of subsurface to surface flows in the tropics remains at a level similar to the present day, but in the high northern latitude zone the ratio increases significantly to 1:1.6 due to the loss of frozen ground. The results for the high pCO2 simulations with the same uniform soil and vegetation cover as the Cretaceous are comparable to the results for the Cretaceous simulation, with higher fractions of subsurface flow of 1:5.4 and 1:5.6, respectively for the tropics, and 1:2.2 and 1:1.6, respectively for the high northern latitudes. We suggest that these fundamental similarities between our far future and Late Cretaceous models provide a framework of possible analogous consequences for (far-) future climate change, within which the integrated human impact over the next centuries could be assessed. The results from this modeling study are consistent with climate information from the sedimentary record which highlights the crucial role of terrestrial-marine interactions during past climate change. This study points to profound consequences for soil biogeochemical cycling, with different latitudinal expressions, passing of climate thresholds at elevated pCO2 levels, and enhanced export of nutrients to the ocean at higher pCO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: 4. International Conference on Paleoceanography (ICP IV), 21.09.-25.09.1992, Kiel .
    Publication Date: 2014-05-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 138 pp . Berichte aus dem Sonderforschungsbereich 313, Veränderungen der Umwelt - Der Nördliche Nordatlantik, 42 .
    Publication Date: 2018-12-20
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Long-term measurements of volcanic gas emissions conducted during the recent decade suggest that under certain conditions the magnitude or chemical composition of volcanic emissions exhibits periodic variations with a period of about two weeks. A possible cause of such a periodicity can be attributed to the Earth tidal potential. The phenomenology of such a link has been debated for long, but no quantitative model has yet been proposed. The aim of this paper is to elucidate whether a causal link from the tidal forcing to variation in the volcanic degassing can be traced analytically. We model the response of a simplified magmatic system to the local tidal gravity variations and derive a periodical vertical magma displacement in the conduit with an amplitude of 0.1–1 m, depending on geometry and physical state of the magmatic system. We find that while the tide-induced vertical magma displacement has presumably no significant direct effect on the volatile solubility, the differential magma flow across the radial conduit profile may result in a significant increase of the bubble coalescence rate in a depth of several kilometres by up to several ten percent. Because bubble coalescence facilitates separation of gas from magma and thus enhances volatile degassing, we argue that the derived tidal variation may propagate to a manifestation of varying volcanic degassing behaviour. The presented model provides a first basic framework which establishes an analytical understanding of the link between the Earth tides and volcanic degassing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...