ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Four cases of nonlinear obliquely propagating magnetosonic (MS) waves are considered using a test particle approach for particles interaction with (1) monochromatic waves propagating both sunward and antisunward, (2) monochromatic waves propagating unidirectionally toward the Sun, (3) a broad band spectrum, propagating both sunward and antisunward, and (4) a broadband spectrum, propagating sunward only. As the solar wind decelerates rapidly inside the bow shock, the interplanetary magnetic field (IMF) increases. Calculations have been performed taking into account such a spatially dependent IMF (based on observations). We find that significant particle acceleration is achieved for both the monochromatic wave and the 'turbulent' MS waves, for oblique propagation (angles between the interplanetary magnetic field and the propagation vector larger than 30 deg). This is due to the fact that at oblique angles resonance width increases. We have compared the relative acceleration of particles for the four cases. Pitch angle scattering and acceleration of particles are found to be much larger in the case of sunward and antisunward propagating waves than those for the sunward waves only. This is due to larger relative phase velocities in the two cases. Also, acceleration of particles is less in the case of a uniform magnetic field than that in the case of spatially increasing magnetic field. The particles get more pitch angle scattered and accelerated in the latter case.
    Keywords: PLASMA PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,275-12,284
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The power laws are approximately f(exp -1.9), f(exp -1.9), and f(exp -2.1) respectively for the Grigg-Shjellerup (GS), Giacobini-Zinner (GZ), and Halley (H) comets. Other than similarities in the power spectra, the magnetic field turbulence is considerably different at the three comets. Phase steepening is demonstrated to occur at the trailing edges of the GS waves. This is probably due to nonlinear steepening plus dispersion of the left-hand mode components, i.e., the turbulence is whistler-mode. This too can be explained by nonlinear steepening plus dispersion of the magnetosonic waves. At the level of GS and GZ turbulence development when the spacecraft measurements were made, classical three-wave processes, such as the decay or modulation instabilities do not appear to play important roles. It is most likely that the nonlinear steepening and dispersive time scales are more rapid than three-wave processes, and the latter had not had time to develop for the relatively new turbulence. The wave turbulence at Halley is linearly polarized. The exact nature of this turbulence is still not well understood. Several possibilities are suggested, based on a preliminary analyses.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1149-1152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We examined 11 cases when the interplanetary magnetic field (IMF) was intensely northward (greater than 10 nT) for long durations of time (greater than 3 hours), to quantitatively determine an uppler limit on the efficiency of solar wind energy injection into the magnetosphere. We have specifically selected these large B(sub N) events to minimize the effects of magnetic reconnection. Many of these cases occurred during intervals of high-speed streams associated with coronal mass ejections when viscous interaction effects might be at a maximum. It is found that the typical efficiency of solar wind energy injection into the magnetosphere is 1.0 x 10(exp -3) to 4.0 x 10(exp -3), 100 to 30 times less efficient than during periods of intense southward IMFs. Other energy sinks not included in these numbers are discussed. Estimates of their magnitudes are provided.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 6; p. 663-666
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.
    Keywords: ASTROPHYSICS
    Type: Astrophysics and Space Science (ISSN 0004-640X); 222; 1-2; p. 113-125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
    Keywords: GEOPHYSICS
    Type: EOS (ISSN 0096-3941); 75; 5; p. 49, 51-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: We report the results of a survey of low-frequency (LF) plasma waves detected during the Ulysses Jupiter flyby. In the Jovian foreshock, two predominant wave periods are detected: 10(exp 2)-s and 5-s, as measured in the spacecraft frame. The 10(exp 2)-s waves are highly nonlinear propagate at large angles to vector-B(sub 0) (typically 50 deg), are steepened, and sometimes have attached whistler packets. For the interval analyzed the 10(exp 2)-s waves had mixed right-and left-hand polarizations. We argue that these are all consistent with being right-hand magnetosonic waves in the solar wind frame. The 10(exp 2)-s waves with attached whistler are similar to cometary waves. The trailing portions are linearly polaraized and the whistler portions circularly polarized with amplitudes decreasing linearly with time. The emissions are generated by approximately 2-keV protons flowing from the Jovian bow shock/magnetosheath into the upstream region. The instability is the ion beam instability. Higher Z ions were considered as a source of the waves but have been ruled out because of the low sunward velocities needed for their resonance. The 5-s waves have delta vector-B/B(sub 0 approximately = 0.5, are compressive and are left-hand polarized in the spacecraft frame. Local generation by three different resonant interactions were considered and have been ruled out. One possibility is that these waves are whistler mode by-products of the steepened lower-frequency magnetosonic waves. Mirror mode structures were detected throughout the outbound magnetosheath passes. For these structures, the theta(sub kB) values were consistently in the range of 80 deg to 90 deg, exceptionally high values.
    Keywords: ASTRONOMY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A12; p. 21,203-21,216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The monthly and daily samples of the Ap index for the interval from 1932 through 1982 were studied using the power spectrum technique. Results obtained for Bartel's period (about 27 days), the semiannual period, the dual-peak solar cycle distribution of geomagnetic storms, and certain other medium-scale periodicities are examined in detail. In addition, results on the cumulative occurrence number of storms per decade as a function of the Ap and Dst indices for the storm are presented.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A6; p. 9215-9231.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Numerical solution of the MHD wave equations for stability of the cometary sheath determined by the balance between the inward Lorentz body force and the outward ion-neutral drag force is obtained by using a two-point boundary value method. The eigenvalues and the eigenfunctions are obtained numerically by treating the cometary inner sheath as a layer of finite thickness, bounded by the contact surface, i.e., the diamagnetic cavity boundary. The magnetic field structure discovered in the ionosphere of Comets Halley and Giacobini-Zinner is found to be unstable. The effects of finite plasma pressure, dissociative recombination, and mass loading due to photoionization are found to be stabilizing but are unable to quench the instability completely. It is also found that the higher the neutral production rate the lesser is the growth rate for the instability.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 409; 2; p. 782-789.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The NASA Solar Probe mission will be one of the most exciting dust missions ever flown and will lead to a revolutionary advance in our understanding of dust within our solar system. Solar Probe will map the dust environment from the orbit of Jupiter (5 AU), to within 4 solar radii of the sun's center. The region between 0.3 AU and 4 Rs has never been visited before, so the ten days that the spacecraft spends during each (of the two) orbit is purely exploratory in nature. Solar Probe will also reach heliographic latitudes as high as about 15 to 28 deg above (below) the ecliptic on its trajectory inbound (outbound) to (from) the sun. This, in addition to the ESA/NASA Ulysses mission, will help determine the out-of-the-ecliptic dust environment. A post-perihelion burn will reduce the satellite orbital period to 2.5 years about the sun. A possible extended mission would allow data reception for two more revolutions, mapping out a complete solar cycle. Because the near-solar dust environment is not well understood (or is controversial at best), and it is very important to have better knowledge of the dust environment to protect Solar Probe from high velocity dust hits, we urgently request the scientific community to obtain further measurements of the nearsolar dust properties.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: ; : Intelligent robots
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: It is contended that statistical data do not support the claim of Gosling et al. (1991) to the effect that the initial speed of a solar wind driver gas close to the sun appears to be the most crucial factor in determining if an earthward direct event will be effective in exciting a large geomagnetic disturbance. It is argued that the time intervals are much too large to observe the storm-time B sub Z dependence. Gosling et al. reply that this comment is based on a serious misunderstanding of their conclusions.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A2; p. 1507, 1508; Reply
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...