ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (20). pp. 7227-7236.
    Publication Date: 2021-04-23
    Description: Our understanding of the processes driving the patterns of dissolved iron (DFe) in the ocean interior, either in observations or models, is complicated by the combined influences of subduction from the surface mixed layer, notable subsurface sources, regeneration, and scavenging loss. We describe a ventilation-based framework to quantify these processes in a global ocean biogeochemical model including diagnostics along potential density surfaces. There is a prevailing control of subsurface DFe by the subduction of surface DFe as preformed DFe augmented by benthic sources of DFe from hydrothermal activity and sediments. Unlike phosphate, there is often a first-order balance with a near cancelation between regeneration and scavenging with the remaining “net regeneration” controlled by the ventilation of surface excesses in Fe-binding ligands. This DFe framework provides a more stringent test of how the total DFe distribution is mechanistically controlled within a model and may be subsequently used to interpret observed DFe distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: In this study we report diapycnal diffusive fluxes of dissolved iron (dFe), dissolved aluminium (dAl) and the major macronutrients to the surface waters of the North Atlantic subpolar gyre. Turbulent diffusivities at the base of the summer mixed layer ranged from 0.01 to 0.5 (median 0.07) cm2 s−1 and daily macronutrient fluxes into the surface mixed layer typically represented 〈 0.5% of integrated mixed layer inventories, although fluxes were highly variable. Elevated nutrient fluxes of up to 4% of mixed layer inventories were identified on the Greenland Shelf, where integrated nutrient pools were lowest due to localised shoaling of the mixed layer. Diffusive fluxes of dFe and dAl were typically 〈0.1% of mixed layer inventories but were also highly variable between stations. Approximations of daily phytoplankton nutrient and Fe uptake indicate that the diffusive flux may at best represent 〈10% of phytoplankton macronutrient uptake, and only 1% of daily phytoplankton Fe uptake. The daily turbulent diffusive flux of dFe was comparable in magnitude to coincident estimates of aeolian Fe supply but despite shallower than normal convective mixing in winter 2010 the diffusive supply was 22 and 59 times smaller than the annual convective supply of Fe to the Irminger and Iceland basins respectively. The general picture obtained from this study is one of small magnitude diffusive nutrient and Fe fluxes to the subpolar North Atlantic during the period of annual nutrient minima and indicates that the diffusive supply mechanism is unlikely to alleviate the recently identified presence of seasonal iron limitation within the North Atlantic subpolar gyre; a condition exacerbated by low dFe:NO3− ratios in subsurface source waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...