ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • 1
    Publication Date: 2011-08-24
    Description: In the present grid-independent approximate Riemann solver for 2D and 3D flows that are governed by the Euler or Navier-Stokes equations, fluxes on grid faces are obtained by wave decomposition; the assumption of information-propagation in the velocity-difference directions leads to a more accurate resolution of shear and shock waves, when these are are oblique to the grid. The model, which yields significantly greater accuracy in both supersonic and subsonic first-order spatially accurate computations, describes the difference in states at each grid interface by the action of five waves.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 105; 2; p. 306-323.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Methods of incorporating multi-dimensional ideas into algorithms for the solution of Euler equations are presented. Three schemes are developed and tested: a scheme based on a downwind distribution, a scheme based on a rotated Riemann solver and a scheme based on a generalized Riemann solver. The schemes show an improvement over first-order, grid-aligned upwind schemes, but the higher-order performance is less impressive. An outlook for the future of multi-dimensional upwind schemes is given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Computational Fluid Dynamics, Volume 2; 55 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-25
    Description: The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: In: Algorithmic trends in computational fluid dynamics; The Institute for Computer Applications in Science and Engineering (ICASE)(LaRC Workshop, NASA Langley Research Center, Hampton, VA, US, Sep. 15; p. 303-337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The behavior of gas dynamic flows which are perturbations of a uniform stream in terms of information transfer across artificial (computational) boundaries remote from the source of disturbance are discussed. A set of boundary conditions is derived involving vorticity, entropy, and pressure-velocity relationships derived from bicharacteristic equations.
    Keywords: AERODYNAMICS
    Type: NASA-CR-178211 , ICASE-86-75 , NAS 1.26:178211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A new two-dimensional approximate Riemann solver has been developed that obtains fluxes on grid faces via wave decomposition. By utilizing information propagation in the velocity-difference directions rather than in the grid-normal directions, this flux function more appropriately interprets and hence more sharply resolves shock and shear waves when they lie oblique to the grid. The model uses five waves to describe the difference in states at a grid face. Two acoustic waves, one shear wave, and one entropy wave propagate in the direction defined by the local velocity difference vector, while the fifth wave is a shear wave that propagates at a right angle to the other four. Test cases presented include a shock reflecting off a wall, a pure shear wave, supersonic flow over an airfoil, and viscous separated airfoil flow. Results using the new model give significantly sharper shock and shear contours than a grid-aligned solver. Navier-Stokes computations over an aifoil show reduced pressure distortions in the separated region as a result of the grid-independent upwinding.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-0239
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Numerical flux formulas for the convection terms in the Euler or Navier-Stokes equations are analyzed with regard to their accuracy in representing steady nonlinear and linear waves (shocks and entropy/shear waves, respectively). Numerical results are obtained for a one-dimensional conical Navier-Stokes flow including both a shock and a boundary layer. Analysis and experiments indicate that for an accurate representation of both layers the flux formula must include information about all different waves by which neighboring cells interact, as in Roe's flux-difference splitting. In comparison, Van Leer's flux-vector splitting, which ignores the linear waves, badly diffuses the boundary layer. The results of MacCormack's scheme, if properly tuned, are significantly better. The use of a sufficiently detailed flux formula appears to reduce the number of cells required to resolve a boundary layer by a factor 1/2 to 1/4 and thus pays off.
    Keywords: NUMERICAL ANALYSIS
    Type: AIAA PAPER 87-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Six months of funding was received for the proposed three year research program (funding for the period from March 1, 1997 to August 31, 1997). Although the official starting date for the project was March 1, 1997, no funding for the project was received until July 1997. In the funded research period, considerable progress was made on Phase I of the proposed research program. The initial research efforts concentrated on applying the 10-, 20-, and 35-moment Gaussian-based closures to a series of standard two-dimensional non-reacting single species test flow problems, such as the flat plate, couette, channel, and rearward facing step flows, and to some other two-dimensional flows having geometries similar to those encountered in chemical-vapor deposition (CVD) reactors. Eigensystem analyses for these systems for the case of two spatial dimensions was carried out and efficient formulations of approximate Riemann solvers have been formulated using these eigenstructures. Formulations to include rotational non-equilibrium effects into the moment closure models for the treatment of polyatomic gases were explored, as the original formulations of the closure models were developed strictly for gases composed of monatomic molecules. The development of a software library and computer code for solving relaxing hyperbolic systems in two spatial dimensions of the type arising from the closure models was also initiated. The software makes use of high-resolution upwind finite-volumes schemes, multi-stage point implicit time stepping, and automatic adaptive mesh refinement (AMR) to solve the governing conservation equations for the moment closures. The initial phase of the code development was completed and a numerical investigation of the solutions of the 10-moment closure model for the simple two-dimensional test cases mentioned above was initiated. Predictions of the 10-moment model were compared to available theoretical solutions and the results of direct-simulation Monte Carlo (DSMC) calculations. The first results of this study were presented at a meeting last year.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A derivation is presented of a local preconditioning matrix for multidimensional Euler equations, that reduces the spread of the characteristic speeds to the lowest attainable value. Numerical experiments with this preconditioning matrix are applied to an explicit upwind discretization of the two-dimensional Euler equations, showing that this matrix significantly increases the rate of convergence to a steady solution. It is predicted that local preconditioning will also simplify convergence-acceleration boundary procedures such as the Karni (1991) procedure for the far field and the Mazaheri and Roe (1991) procedure for a solid wall.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-1552 , AIAA Computational Fluid Dynamics Conference; Jun 24, 1991 - Jun 27, 1991; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In order to develop numerical schemes for stiff problems, a model of relaxing heat flow is studied. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such 'decoupled' schemes do not take into account the interaction between the wave families, and hence result in incorrect wavespeeds. Schemes can differ by up to two orders of magnitude in their rms errors, even while maintaining second-order accuracy. 'Coupled' schemes which account for the interactions are developed to obtain two additional free parameters. Numerical results are given for several decoupled and coupled schemes.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1535 , AIAA Computational Fluid Dynamics Conference; Jun 24, 1991 - Jun 27, 1991; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A limiting method has been devised for a grid-independent flux function for use with the two-dimensional Euler and Navier-Stokes equations. This limiting is derived from a monotonicity analysis of the model and allows for solutions with reduced oscillatory behavior while still maintaining sharper resolution than a grid-aligned method. In addition to capturing oblique waves sharply, the grid-independent flux function also reduces the entropy generated over an airfoil in an Euler computation and reduces pressure distortions in the separated boundary layer of a viscous-flow airfoil computation. The model has also been extended to three dimensions, although no angle-limiting procedure for improving monotonicity characteristics has been incorporated.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1530 , AIAA Computational Fluid Dynamics Conference; Jun 24, 1991 - Jun 27, 1991; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...