ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.
    Keywords: Geophysics
    Type: Paper-1999GL010888 , Geophysical Research Letters (ISSN 0094-8276); 27; 5; 665-668
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Structure and kinematics of carbon monoxide in the upper stratosphere and lower mesosphere (10-0.03 hPa) are studied for the early northern winter 1991/92 using the Upper Atmosphere Research Satellite Improved Stratospheric and Mesospheric Sounder (ISAMS) measurements. The study is aided by data from a 6-week parameterized-chemistry run of the Goddard Space Flight Center 3D Chemistry and Transport Model (CTM), initialized on 8 December 1991. Generally, CO mixing ratios increase with height due to the increasing source contribution from CO, photolysis. In the tropical upper stratosphere. however, a local maximum in CO mixing ratio occurs. A simple photochemical model is used to show that this feature results largely from methane oxidation. In the extratropics the photochemical lifetime of CO is long, and therefore its evolution is dictated by large-scale motion of air. evidenced by strong correlation with Ertel potential vorticity. This makes CO one of the few useful observable tracers at the stratopause level and above. Thus CO maps are used to study the synoptic evolution of the polar vortex in early January 1992. Modified Lagrangian mean mixing diagnostics are applied to ISAMS and CTM data to examine the strength of the mixing barrier at the polar vortex edge. It is demonstrated that planetary wave activity weakens the barrier. promoting vortex erosion. The vortex erosion first appears in the lower mesosphere and subsequently descends through the upper stratosphere. and is attributed to effects of planetary wave dissipation. Agreement between ISAMS and CTM is good in the horizontal distribution of CO throughout the examined period, but vertical CO gradients in the CTM weaken with time relative to the ISAMS observations.
    Keywords: Environment Pollution
    Type: Journal of the Atmospheric Sciences; 56; 563-583
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...