ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-05
    Description: Arctic warming causes permafrost thaw and accelerates microbial decomposition of soil organic matter (SOM) to carbon dioxide (CO〈sub〉2〈/sub〉) and methane (CH〈sub〉4〈/sub〉). The determining factors for the ratio between CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 formation are still not well understood due to scarce in situ measurements, particularly in remote Arctic regions. We quantified the CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios of SOM decomposition in wet and dry tundra soils by using CO〈sub〉2〈/sub〉 fluxes from clipped plots and in situ CH〈sub〉4〈/sub〉 fluxes from vegetated plots. At the water‐saturated site, CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios decreased sharply from 95 at beginning of July to about 10 in August and September with a median of 12.2 (7.70–17.1; 25%–75% quartiles) over the whole vegetation period. When considering CH〈sub〉4〈/sub〉 oxidation, estimated to reduce in situ CH〈sub〉4〈/sub〉 fluxes by 10%–31%, even lower CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios were calculated (median 10.9–8.41). Active layer depth and soil temperature were the main factors controlling these ratios. Methane production was associated with subsoil (40 cm) temperature, while heterotrophic respiration was related to topsoil (5 cm) temperatures. As expected, CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios were substantially higher at the dry site (median 373, 292–500, 25%–75% quartiles). Both tundra types lost carbon preferentially in form of CO〈sub〉2〈/sub〉, and CH〈sub〉4〈/sub〉‐C represented only 0.27% of the dry tundra total carbon loss and 6.91% of the wet tundra total carbon loss. The current study demonstrates the dynamic of in situ CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios from SOM decomposition and will help improve simulations of future CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 fluxes from thawing tundra soils.
    Description: Plain Language Summary: Global warming causes the thaw of the permanently frozen soil in Arctic regions, exposing soil organic matter (SOM) previously frozen to decomposition, increasing the emission of carbon dioxide (CO〈sub〉2〈/sub〉) and methane (CH〈sub〉4〈/sub〉), which are greenhouse gases. It is crucial to quantify the ratio of CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 produced because CH〈sub〉4〈/sub〉 has a stronger global warming potential than CO〈sub〉2〈/sub〉. We partitioned SOM decomposition into CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 formation (CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios) in wet and dry tundra soils on Samoylov Island, Northeastern Siberia, and we related these ratios to environmental variables. Deeper active layer, which is the topsoil layer that freezes and thaws annually, and higher subsoil (40 cm) temperature at the interface between the active layer and the permafrost, foster CH4 production and decrease CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios. Carbon was preferentially lost in form of CO〈sub〉2〈/sub〉 by the soils, but CH〈sub〉4〈/sub〉 had a larger contribution to the carbon loss in the wet tundra. Our study indicates that warming and deepening of the active layer can result in rising CH〈sub〉4〈/sub〉 production. Further understanding of in situ CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios from SOM decomposition will help improve simulations on future CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 fluxes from thawing tundra soils.
    Description: Key Points: Topsoil (5 cm) warming increases the CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratio, while warming of subsoil (40 cm) leads to lower CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratios. The CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratio is associated with active‐layer depth (ALD) due to a direct effect of ALD on CH〈sub〉4〈/sub〉 production. Carbon was preferentially lost in form of CO〈sub〉2〈/sub〉 at wet and dry sites, but CH〈sub〉4〈/sub〉 had a higher contribution at the wet tundra site.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Clusters of Excellence CliSAP
    Description: https://doi.pangaea.de/10.1594/PANGAEA.944841
    Description: https://doi.pangaea.de/10.1594/PANGAEA.944844
    Keywords: ddc:631.4 ; thaw depth ; methanogenesis ; heterotrophic respiration ; chamber ; greenhouse gases ; active layer thickening
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AWI
    In:  In: Russian-German Cooperation SYSTEM LAPTEV SEA The Expedition LENA 2002. , ed. by Grigoriev, M. N., Rachold, V., Bolshiyanov, D. Y., Pfeiffer, E. M., Schirrmeister, L., Wagner, D. and Hubberten, H. W. Berichte zur Polar- und Meeresforschung, 466 . AWI, Bremerhaven, Germany, pp. 316-325.
    Publication Date: 2020-10-26
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Soil Science Society of America
    In:  Soil Science Society of America Journal, 68 (3). pp. 1002-1011.
    Publication Date: 2020-05-26
    Description: Wetland soils affected by permafrost are extensive in subarctic and arctic tundra. However, this fact does not imply these soils have been sufficiently investigated. In particular, studies of element translocation processes are scarce. This study was conducted (i) to determine the relationship between water and redox regimes in wetland soils in the Siberian tundra, and (ii) to investigate their influence on the distribution of redox sensitive and associate elements (Mn, Fe, P). Major geomorphic units were chosen (microhigh, polygon rim and slope; microlow, polygon center) from two low-centered polygons in the Lena Delta. Within polygons, redox potential, permafrost, and water level were measured during summer in 1999 and 2000 and (related) compared with element distribution. Manganese, Fe, and P accumulations were preferentially observed in aerobic microhighs. Anaerobic conditions in the microlows lead to a mobilization of Mn, Fe, and P. The elements migrate via water and are immobilized at the microhigh, which acts as an oxidative barrier. The element pattern, indicating an upward flux via water along redox gradients, is explained by higher evapotranspiration from soils and vegetation of the microhighs (Typic Aquiturbel) compared with soils and vegetation of the microlows (Typic Historthel). However, in further research this upward transport should be validated using labeled elements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-01
    Description: The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2–C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-17
    Description: Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-31
    Description: Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold-adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AWI, Alfred-Wegener-Institut für Polar- und Meeresforschung
    In:  In: Russian-German Cooperation SYSTEM LAPTEV SEA : the Expedition LENA 2002. , ed. by Grigoriev, M. N., Rachold, V., Bolshiyanov, D. Y., Pfeiffer, E. M., Schirrmeister, L., Wagner, D. and Hubberten, H. W. Berichte zur Polar- und Meeresforschung, 466 . AWI, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, pp. 51-57.
    Publication Date: 2020-10-26
    Description: Lakes are important sources of atmospheric methane (CHANTON et al. 1989; THEBRATH1 991; MICHMERHUIZE&N STRIEGL1 996; SEMILETOV et al., 1996; PHELPS et al. 1998; DUCHEMIN et al. 1999; MAKHOV et al. 1999; HUTTUNEN et al. 2001). Permafrost landscapes of the Lena-Delta are often covered by polygonal tundra and patterned ground lakes, respectively. Up to now little is known about the contribution of those small but widespread lakes regarding their function as sources of atmospheric methane. Thus, surveying patterned ground lakes is a necessary part of investigations for estimating both global and local methane fluxes.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-31
    Description: The abundance, activity, and temperature response of aerobic methane-oxidizing bacteria were studied in permafrost-affected tundra soils of northeast Siberia. The soils were characterized by both a high accumulation of organic matter at the surface and high methane concentrations in the water-saturated soils. The methane oxidation rates of up to 835 nmol CH4 h−1 g−1 in the surface soils were similar to the highest values reported so far for natural wetland soils worldwide. The temperature response of methane oxidation was measured during short incubations and revealed maximum rates between 22 °C and 28 °C. The active methanotrophic community was characterized by its phospholipid fatty acid (PLFA) concentrations and with stable isotope probing (SIP). Concentrations of 16:1ω8 and 18:1ω8 PLFAs, specific to methanotrophic bacteria, correlated significantly with the potential methane oxidation rates. In all soils, distinct 16:1 PLFAs were dominant, indicating a predominance of type I methanotrophs. However, long-term incubation of soil samples at 0 °C and 22 °C demonstrated a shift in the composition of the active community with rising temperatures. At 0 °C, only the concentrations of 16:1 PLFAs increased and those of 18:1 PLFAs decreased, whereas the opposite was true at 22 °C. Similarly, SIP with 13CH4 showed a temperature-dependent pattern. When the soils were incubated at 0 °C, most of the incorporated label (83%) was found in 16:1 PLFAs and only 2% in 18:1 PLFAs. In soils incubated at 22 °C, almost equal amounts of 13C label were incorporated into 16:1 PLFAs and 18:1 PLFAs (33% and 36%, respectively). We concluded that the highly active methane-oxidizing community in cold permafrost-affected soils was dominated by type I methanotrophs under in situ conditions. However, rising temperatures, as predicted for the future, seem to increase the importance of type II methanotrophs, which may affect methane cycling in northern wetlands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-12
    Description: The bacterial community composition of the active layer (0–45 cm) of a permafrost-affected tundra soil was analysed by fluorescence in situ hybridisation (FISH). Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g., soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109–1.2 × 108 cells per gram dry soil). Using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. The amount of FISH-detectable cells decreased with increasing depth and so did the diversity of ascertained phylogenetic groups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wissenschaftliche Auswertungen
    In:  In: Warnsignale aus den Polarregionen : wissenschaftliche Fakten. , ed. by Lozán, J. L., Graßl, H., Hubberten, H. W., Hupfer, P., Karbe, L. and Piepenburg, D. Wissenschaftliche Auswertungen, Hamburg, Germany, pp. 232-236. ISBN 3-9809688-1-X
    Publication Date: 2015-03-04
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...