ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: The very high energy (VHE; E great than 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 5493854956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE -ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E greater than 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 x 10(exp -11 ph cm(exp -2 S(exp -1), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15deg. This VHE flare showed a fast flux variation with an increase of a factor approximately 4 in 25 min, and a falling time of approximately 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44061 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 594; A76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70876 , Proceedings of Science (e-ISSN 1824-8039); 301; 542|International Cosmic Ray Conference; Jul 12, 2017 - Jul 20, 2017; Bexco, Busan; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...