ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: An analysis of nadir reflectivity Fourier spatial power spectra and autocorrelation functions at solar wavelengths and for cloudy conditions has been carried out. The data come from Landsat Thematic Mapper (TM) observations, while Monte Carlo (MC) simulations are used to aid the interpretation of the Landsat results. We show that radiative processes produce consistent signatures on power spectra and autocorrelation functions. The former take a variety of forms not shown or explained in previous observational studies. We demonstrate that the TM spectra can potentially be affected by both radiative "roughening" at intermediate scales (approx. 1 -5 km), being more prevalent at large solar zenith angles, and the already documented radiative "smoothing" at small scales (less than 1 km). These processes are wavelength dependent, as shown by systematic differences between conservative (for cloud droplets) TM band 4 (approx. 0.8 microns) and absorbing band 7 (approx. 2.2 microns): band 7 exhibits more roughening and less smoothing. This is confirmed quantitatively by comparing least-squared fitted power spectral slopes for the two bands. It is also corroborated by a slower decrease with distance of autocorrelation function values for band 4 compared to band 7. The appearance of roughening at large solar zenith angles is a result of side illumination and shadowing and adds an additional complexity to the power spectra. MC spectra are useful in illustrating that scale invariant optical depth fields can produce complex power spectra that take a variety of shapes under different conditions. We show that radiative roughening increases with the decrease of single scattering albedo and with the increase of solar zenith angle (as in the observations). For high Sun there is also a clear shift of the radiative smoothing scale to smaller values as droplet absorption increases. The shape of the power spectrum is sensitive to the magnitude and type of cloud top height variability, with the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research Atmospheres; Volume 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-06
    Description: This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. A dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN23029 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 42; 13; 5485-5492
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: The simulation of changes in the Earth's climate due to solar and thermal radiative processes with global climate models (GCMs) is highly complex, depending on the parameterization of a multitude of nonlinearly coupled physical processes. In contrast, the germ of global climate change, the radiative forcing from enhanced abundances of greenhouse gases, is relatively well understood. The impressive agreement between detailed radiation calculations and highly resolved spectral radiation measurements in the thermal infrared under cloudless conditions (see, for example, Fig. 1) instills confidence in our knowledge of the sources of gaseous absorption. That the agreement spans a broad range of temperature and humidity regimes using instruments mounted on surface, aircraft, and satellite platforms not only attests to our capability to accurately calculate radiative fluxes under present conditions, but also provides confidence in the spectroscopic basis for computation of fluxes under conditions that might characterize future global climate (e.g., radiative forcing). Alas, the computational costs of highly resolved spectral radiation calculations cannot be afforded presently in GCMs. Such calculations have instead been used as the foundation for approximations implemented in fast but generally less accurate algorithms performing the needed radiative transfer (RT) calculations in GCMs. Credible climate simulations by GCMs cannot be ensured without accurate solar and thermal radiative flux calculations under all types of sky conditions: pristine cloudless, aerosol-laden, and cloudy. The need for accuracy in RT calculations is not only important for greenhouse gas forcing scenarios, but is also profoundly needed for the robust simulation of many other atmospheric phenomena, such as convective processes.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 91; Issue 3; 305?310
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN12849 , Journal of Geophysical Research: Atmospheres; 119; 13; 8362–8383
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN35640 , Proceedings of the National Academy of Sciences (e-ISSN 1091-6490); 113; 21; 5791-5796
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Systematic changes of clouds and precipitation are notoriously difficult to ascribe to aerosols. This presentation will showcase yet one more attempt to at least credibly detect the signal of aerosol-cloud-precipitation interactions. We surmise that the concept of cloud regimes (CRs) is appropriate to conduct such an investigation. Previous studies focused on what we call here dynamical CRs, and while we continue to adopt those too for our analysis, we have found that a different way of organizing cloud systems, namely via microphysical regimes is also promising. Our analysis relies on MODIS Collection 6 Level-3 data for clouds and aerosols, and TRMM-TMPA data for precipitation. The regimes are derived by applying clustering analysis on MODIS joint histograms, and once each grid cell is assigned a regime, aerosol and precipitation data can be spatiotemporally matched and composited by regime. The composites of various cloud and precipitation variables for high (upper quartile of distribution) and low (lower quartile) aerosol loadings can then be contrasted. We seek evidence of aerosol effects both in regimes with large fractions of deep ice-rich clouds, as well as regimes where low liquid phase clouds dominate. Signals can be seen, especially when the analysis is broken by land-ocean and when additional filters are applied, but there are of course caveats which will be discussed.
    Keywords: Geophysics; Meteorology and Climatology
    Type: GSFC-E-DAA-TN29936 , American Meteorological Society Annual Meeting; Jan 10, 2016 - Jan 14, 2016; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN35638
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...