ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-04
    Description: Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to dierent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to dierences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN26978 , Environmental Research Letters (e-ISSN 1748-9326); Volume 10; No. 10; 104010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN21570 , Journal of Climate; 28; 12; 4820-4840
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Palaeoclimate variations are an essential component in constraining future projections of climate change as a function of increasing anthropogenic greenhouse gases. The Earth System Sensitivity (ESS) describes the multi-millennial response of Earth (in terms of global mean temperature) to a doubling of CO2 concentrations. A recent study used a correlation of inferred temperatures and radiative forcing from greenhouse gases over the past 800,000 years to estimate the ESS from present day CO2 is about 9 degrees C, and to imply a long-term commitment of 3-7 degrees C even if greenhouse gas levels remain at present-day concentrations. However, we demonstrate that the methodology of ref. 2 does not reliably estimate the ESS in the presence of orbital forcing of ice age cycles and therefore conclude that the inferred present-day committed warming is considerably overestimated.
    Keywords: Statistics and Probability; Meteorology and Climatology
    Type: GSFC-E-DAA-TN44310 , Nature (ISSN 0028-0836) (e-ISSN 1476-4687); 547; 7662; E16-E17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN29178 , Ringberg 2015 WCRP Grand Challenge Workshop: Earth''s Climate Sensitivities; Mar 23, 2015 - Mar 27, 2015; Schloss Ringberg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: El Nio-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN28991 , Journal of Climate; 28; 25; 9997-10013
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Recent trends in global mean surface air temperature fall outside the 90 range predicted by models using the CMIP5 forcings and scenarios; this recent period of muted warming is dubbed the hiatus. The hiatus has attracted broad attention in both the popular press and the scientific literature, primarily because of its perceived implications for understanding long-term trends. Many hypotheses have been offered to explain the warming slowdown during the hiatus, and comprehensive studies of this period across multiple variables and spatial scales will likely improve our understanding of the physical mechanisms driving global temperature change and variability.We argue, however, that decadal temperature trends by themselves are unlikely to constrain future trajectories of global mean temperature and that the hiatus does not significantly revise our understanding of overall climate sensitivity. Instead, we demonstrate that, because of the poorly constrained nature of the hiatus, model-observation disagreements over this period may be resolvable via uncertainties in the observations, modeled internal variability, forcing estimates, or (more likely) some combination of all three factors. We define the hiatus interval as 1998-2012, endpoints judiciously chosen to minimize observed warming by including the large 1998 El Nio event and excluding 2014, an exceptionally warm year. Such choices are fundamentally subjective and cannot be considered random, so any probabilistic statements regarding the likelihood of this occurring need to be made carefully. Using this definition, the observed global temperature trend estimates from four datasets fall outside the 5-95 interval predicted by the CMIP5 models. Here we explore some of the plausible explanations for this discrepancy, and show that no unique explanation is likely to fully account for the hiatus.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN26345 , US Clivar Variations; 13; 3; 25-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN27667 , Nature Climate Change (e-ISSN 1758-6798); 6; 386-389
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN55265 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 3; 1595-1611
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...