ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Years
  • 1
    Publication Date: 2018-06-06
    Description: This paper gives an overview of August 2004 through July 2009 upper tropospheric (UT) water vapor (H2O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H2O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within approximately 15%) agreement in IWC at these altitudes, but GEOS-5 H2O is approximately 50% (215 hPa) to approximately 30% (147 hPa) larger than MLS, possibility due to its higher temperatures at these altitudes. GOES-5 produces a weaker intertropical convergence zone than MLS, while a seasonally-migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H2O and IWC. MLS and GEOS-5 both show spatial anti-correlation between IWC and H2O at 100 hPa, where less H2O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H2O in the tropics, and approximately 20% more H2O in the extra-tropics, than does MLS. Behavior of the 100 hPa H2O, which exhibits a quasi-biennial oscillation, appears consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H2O from approximately 147 hPa to approximately 10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H2O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Nino-Southern Oscillation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This is a report presenting the progress of a research grant funded by NASA for work performed from June 1, 1993 to August 1, 1993. The report deals with the Robot Operated Material Processing System (ROMPS). It presents results of a computer simulation study conducted to investigate the performance of the control systems controlling the azimuth, elevation, and radial axes of the ROMPS and its gripper. Four study cases are conducted. The first case investigates the control of free motion of the three areas. In the second case, the compliant motion in the elevation axis with the wrist compliant device is studied in terms of position accuracy and impact forces. The third case focuses on the behavior of the control system in controlling the robot motion along the radial axis when pulling the pallet out of the rack. In the fourth case, the compliant motion of the gripper grasping a solid object under the effect of the gripper passive compliance is studied in terms of position accuracy and contact forces. For each of the above cases, a set of PIR gains will be selected to optimize the controller performance and computer simulation results will be presented and discussed.
    Keywords: CYBERNETICS
    Type: NASA-CR-196321 , NAS 1.26:196321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The use of clear (cloud-free) channels for AIRS in GEOS-5 had shown positive impact on forecast skills in both hemispheres. However, improvements in forecast skills due to the assimilation of AIRS data are less impressive since the number of assimilated channels from AIRS is much larger than that from other Infrared sounders such as HIRS-3 onboard NOAA 15-17 satellites. This limitation of AIRS radiance data to improve the forecast skill is mainly due to the fact that channels capable of peaking below clouds are not used in the assimilation and yet those have highest vertical resolving capability of AIRS instrument are concentrated in the lower troposphere. On average, the percentage of AIRS footprints completely clear for all channels is less than 10%. The percentage of assimilated AIRS channel radiances however ranges from 100% for channels peaking in the upper stratosphere, above the cloud, to no more that 5% in the lower atmosphere due to cloud contamination. Our current ability to model and predict clouds accurately in global model, and to fully characterize and parameterize optical properties of cloud particles in radiative transfer model are the two major obstacles prohibiting us to use cloudy radiance directly in the assimilation. To further improve forecast skill using AIRS data, we ought to use the channels peaking below the clouds in the troposphere, which can be accomplished by assimilating cloud-cleared radiance. The cloud-cleared radiance data for AIRS used in this study were obtained from optimal cloud clearing procedures developed by researchers at CIMSS of University of Wisconsin at Madison to retrieve clear column radiances for all AIRS channels by collocating multi-band MODIS IR clear radiance observations with the AIRS cloudy radiances on a single footprint basis. Two adjacent AIRS cloudy footprints are used to retrieve one AIRS cloud-cleared radiance spectrum and no background information (first guess) is needed. To assimilate the cloud-cleared radiance data, the errors of the cloud-cleared radiances need to be addressed. The details of convolving AIRS radiances with MODIS spectral response function and comparison with MODIS-measured cloud-free radiance will be presented. The range of errors of cloud-cleared radiances for AIRS using collocated MODIS clear and near-by AIRS clear data will be shown. The NASA. global data assimilation model, GEOS-5, is used to evaluate and assimilate the cloud-cleared radiance for AIRS. The residues between the cloud-cleared brightness temperature and the simulated brightness temperature from background (i.e., OMFs) will be investigated. The quality control procedures will be documented based on error estimation and the OMFs. Finally, the impacts between assimilation of clear channel radiances and cloud-cleared radiances will be addressed.
    Keywords: Earth Resources and Remote Sensing
    Type: 16th International Advance TIROS Operational Vertical Sounder (ATOVS) Working Group; May 06, 2008 - May 10, 2008; Rio de Janeiro; Brazil
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.
    Keywords: Meteorology and Climatology
    Type: AGU Fall Meeting (Session A01: Atmospheric Sciences General Contributions); Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...