ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 149 . pp. 70-83.
    Publication Date: 2021-02-08
    Description: Highlights • Shifts in WSBW properties to less dense varieties likely equate to less formation of WSBW. • The decline of WSBW volume ceased around 2005 and likely recovering after that. • Dense Shelf Waters drive and modulate the recent WSBW variability. • WSBW is composed by 71% of mWDW and 29% of Dense Shelf Waters. Abstract The role of Antarctic Bottom Water (AABW) in changing the ocean circulation and controlling climate variability is widely known. However, a comprehensive understanding of the relative contribution and variability of Antarctic regional deep water mass varieties that form AABW is still lacking. Using a high-quality dataset comprising three decades of observational shipboard surveys in the Weddell Sea (1984–2014), we updated the structure, composition and hydrographic properties variability of the Weddell Sea deep-layer, and quantified the contribution of the source waters composing Weddell Sea Bottom Water (WSBW) in its main formation zone. Shifts in WSBW hydrographic properties towards less dense varieties likely equate to less WSBW being produced over time. WSBW is primarily composed of 71 ± 4% of modified-Warm Deep Water (mWDW) and 29 ± 4% of Dense Shelf Waters, with the latter composed by ~ two-thirds (19 ± 2%) of High Salinity Shelf Water and ~ one-third (10 ± 6%) of Ice Shelf Water. Further, we show evidence that WSBW variability in the eastern Weddell Sea is driven by changes in the inflow of Dense Shelf Waters and bottom water from the Indian Sector of the Southern Ocean. This was observed through the rise of the WSBW contribution to the total mixture after 2005, following a twenty-year period (1984–2004) of decreasing contribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We investigate the spatiotemporal variability of the source water masses (i.e., varieties of Subtropical Mode Water – STMW) that contribute to the South Atlantic Central Water (SACW) in the South Atlantic Ocean. Thus, the composition of the SACW layer is updated. For this investigation, we applied an optimum multiparameter (OMP) analysis and used the conservative and semi-conservative parameters available from the World Ocean Database and Argo floats for the South Atlantic Ocean. The STMW18 (at upper levels) sourced in the central and eastern regions of the South Atlantic and the STMW12 (at lower levels) sourced at the boundaries of the South Atlantic Subtropical Front are the main contributors to the SACW. Although also important, the contribution of STMW14 (sourced in the Brazil-Malvinas Confluence zone) is regionally confined by the Brazil Current recirculation gyre. The contributions from Subtropical Indian Mode Water (SIMW) increased westward along the Agulhas Corridor, while the contribution from STMW12 decreased. The relatively low contribution from SIMW matches the results of previous studies regarding the influence of these waters in the climatology of the South Atlantic Ocean. However, it cannot be ignored, since the results bring new light to further investigations of the mixing processes in the ocean interior of the South Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-08
    Description: The Southern Ocean is a key region for analyzing environmental drivers that regulate sea-air CO2 exchanges. These CO2 fluxes are influenced by several mesoscale structures, such as meanders, eddies and other mechanisms responsible for energy dissipation. Aiming to better understand sea-air CO2 dynamics in the northern Antarctica Peninsula, we investigated an anticyclonic stationary eddy located south of Clarence Island, in the eastern basin of Bransfield Strait – named the Antarctica Slope Front bifurcation (ASFb) eddy. Physical, chemical and biological data were sampled, and remote sensing measurements taken, in the region during late summer conditions in February 2020. The eddy’s core consisted of cold (0.31 °C), salty (34.38) and carbon-rich (2247 μmol kg−1) waters with dissolved oxygen depletion (337 μmol kg−1). The core retains a mixture of local surface waters with waters derived from Circumpolar Deep Water (i.e., Warm Deep Water from the Weddell Sea and modified Circumpolar Deep Water from the Bransfield Strait) and Dense Shelf Water. The ASFb eddy acts as a CO2 outgassing structure that reaches a CO2 emission to the atmosphere of ∼1.5 mmol m−2 d–1 in the eddy’s core, mostly due to enhanced dissolved inorganic carbon (DIC). The results suggest that surface variation in DIC in the eddy’s core is modulated by (i) the entrainment of CO2-rich intermediate waters at ∼500 m, (ii) low primary productivity, associated with small phytoplankton cells such as cryptophytes and green flagellates, and (iii) respiration processes caused by heterotrophic organisms (i.e., zooplankton community). By providing a comprehensive view of these physical and biogeochemical properties of this stationary eddy, our results are key to adding new insights to a better understanding of the behavior of mesoscale features influencing sea-air CO2 exchanges in polar environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The wind-driven part of the South Atlantic Ocean is primarily ventilated through central and intermediate water formation. Through the water mass formation processes, anthropogenic carbon (C-ant) is introduced into the ocean's interior which in turn makes the South Atlantic region vulnerable to ocean acidification. C-ant and the accompanying acidification effects have been estimated for individual sections in the region since the 1980s but a comprehensive synthesis for the entire basin is still lacking. Here, we quantified the C-ant accumulation rates and examined the changes in the carbonate system properties for the South Atlantic using a modified extended multiple linear regression method applied to five hydrographic sections and data from the GLODAPv2.2021 product. From 1989 to 2019, a mean C-ant column inventory change of 0.94 +/- 0.39 mol C m(-2) yr(-1) was found. C-ant accumulation rates of 0.89 +/- 0.33 mu mol kg(-1) yr(-1) and 0.30 +/- 0.29 mu mol kg(-1) yr(-1) were observed in central and intermediate waters, accompanied by acidification rates of -0.0020 +/- 0.0007 pH units yr(-1) and -0.0009 +/- 0.0009 pH units yr(-1), respectively. Furthermore, increased remineralization was observed in intermediate waters, amplifying the acidification of this water mass, especially at the African coast along 25 degrees S. This increase in remineralization is likely related to circulation changes and increased biological activity nearshore. Assuming no changes in the observed trends, South Atlantic intermediate waters will become unsaturated with respect to aragonite in similar to 30 years, while the central water of the eastern margins will become unsaturated in similar to 10 years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-07
    Description: Flow of dense shelf water provide an efficient mechanism for pumping CO 2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon ( C ant ) and its consequences remain unclear. Here, we show prominent transport of C ant (25.0 ± 4.7 Tg C yr −1 ) into the deep ocean (〉2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower C ant in the upper waters than that of other open oceans to sustain a stronger CO 2 uptake capacity (16.9 ± 3.8 Tg C yr −1 ). Nevertheless, the accumulation of C ant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 . Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt. Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of anthropogenic CO 2 ( C ant ), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration of C ant and a visible pattern of relatively high concentration of C ant along the AABW formation pathway, and the concentration of C ant along the shelf‐slope is higher than that of other marginal seas at low‐mid latitudes, implying a highly effective C ant transport in AABW formation areas. We also found strong upper‐layer CO 2 uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW‐driven CO 2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic CO 2 , which also drives acidification in the other ocean basins. Key Points We show evidence for the accumulation of C ant along the Antarctic shelf‐slope into the deep ocean The process of AABW formation drives C ant downward transport at 25.0 ± 4.7 Tg C yr −1 , sustaining the CO 2 uptake in the surface ocean This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 , which is faster than in other deep oceans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...