ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2017-12-21
    Description: Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 510 . pp. 54-63.
    Publication Date: 2020-01-02
    Description: Seagrass meadows ecosystem engineering effects are correlated to their density (which is in turn linked to seasonal cycles) and often cannot be perceived below a given threshold level of engineer density. The density and biomass of seagrass meadows (Z. marina) together with associated macrophytes undergo substantial seasonal changes, with clear declines in winter. The present study aims to test whether the seasonal changes in the density of recovering seagrass meadows affect the benthic food webs of the southern Baltic Sea (Puck Bay). It includes meiofauna, macrofauna and fish of vegetated and unvegetated habitats in summer and winter seasons. Two levels of organization have been tested – species-specific diet preferences using stable isotopes (δ13C, δ15N) in Bayesian mixing models (MixSIAR) and the community-scale food web characteristics by means of isotopic niches (SIBER). Between-habitat differences were observed for grazers, as a greater food source diversity in species from vegetated habitats was noted in both seasons. Larger between-habitat differences in winter were documented for suspension/detritus feeders. The community-wide approach showed that the differences between the habitats were greater in winter than in summer (as indicated by the lower overlap of the respective isotope niches). Overall, the presence of seagrass meadows increased ecological stability (in terms of the range of food sources utilized by consumers) in the faunal assemblage, while invertebrates from unvegetated areas shifted their diet to cope with winter conditions. Therefore, as a more complex system, not sensitive to seasonal changes, Z. marina meadows create a stable habitat with high resilience potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-20
    Description: Seagrass meadows are among the most diverse and productive coastal ecosystems in the world. Currently, the accelerating loss of these habitats is recognized worldwide. In the southern Baltic Sea, a natural recovery of Zostera marina meadows has occurred after a dramatic reduction within the last century. The aim of this study is to understand if and how the recovering eelgrass meadows affect the functioning of benthic ecosystems. The trophic links within the benthic food webs in the seagrass meadows and bare sandy bottoms were depicted and compared. The trophic connections were examined by combining stable isotope (SI) composition (δ13C, δ15N) and fatty acid (FA) profiles of meio- and macrofauna consumers and of potential food sources (particulate organic matter, surface sediment organic matter, epiphytes, microphytobenthos/bacteria and macrophytes) in a Bayesian mixing model framework (MixSIAR). Significantly higher amounts of the FA bacterial marker (C18:1ɷ7) were observed in meiofauna (approximately 40%) than in the macrofauna (1% on average), suggesting that bacteria are an important part of the meiofauna diet. The mixing model results indicated that the benthic consumers in the vegetated habitat utilized more food sources (e.g., epiphytes in the diets of meiofauna and macrofaunal grazers) and thus had a more diverse diet. Macrofaunal omnivores relied to a larger degree on animal-derived organic matter in vegetated habitat, which could be linked to higher invertebrate prey availability. The results highlight the importance of recovering seagrass meadows in driving the mechanisms responsible for food web organization. Any type of change to the state of seagrass meadows is crucial to the functioning and stability of marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...