ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-01-16
    Description: High resolution soft X-ray imaging from the solar probe is justified in terms of the expected scientific returns which include the determination of the temperature and density structure of a coronal loop. The advantages of the grazing incidence telescope over the multiple pinhole camera are discussed. An instrument package is described which includes a grazing incidence mirror, a thermal prefilter, a three position filter wheel and a focal plane detector baselined as an 800 by 800 back-illuminated charge coupled device. The structural assembly together with the data processing equipment would draw heavily on the designs being developed for the Solar Polar Mission.
    Keywords: SOLAR PHYSICS
    Type: JPL A Close-up of the Sun; p 94-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 113; 1-2,; 347-352
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-18
    Description: A concept and an apparatus designed to investigate the reflected and transmitted distributions of light from optically thick clouds is presented. The Cloud Field Optical Simulator (CFOS) is a laboratory device which utilizes an array of incandescent lamps as a source, simulated clouds made from cotton or styrofoam as targets, and an array of silicon photodiodes as detectors. The device allows virtually any source-target-detector geometry to be examined. Similitude between real clouds and their CFOS cotton or styrofoam counterparts is established by relying on a linear relationship between optical depth and the ratio of reflected to transmitted light for a semi-infinite layer. Comparisons of principal plane radiances observed by the CFOS with Monte Carlo computations for a water cloud at 0.7 microns show excellent agreement.
    Keywords: OPTICS
    Type: A Lab. Invest. of the Reflective Properties of Simulated, Opt. Thick Clouds; 37 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-12
    Description: The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Determination of the angular variation of the reflected radiance field in order to infer the reflected component of the Earth radiation budget from medium or narrow field of view radiometer measurements is discussed. An average angular model applicable at 250 to 1000 km is presented and evaluated. The nature of the convergence of the radiance patterns to the regional means is also discussed. Radiances measured during summer Monex 1979, from Hudson Bay to Saudi Arabia, were averaged and then normalized by multiplying by pi and dividing by the scene-averaged reflected flux density. This casts the model into the inverse of the bidirectional reflectance normalization coefficient, which has the value of unity for an isotropic surface. The reflected component of the Earth's radiation budget is inferred to an accuracy of about 2.5%.
    Keywords: SPACE RADIATION
    Type: NASA. Langley Research Center Earth Radiation Science Seminars; p 45-52
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer at the locations of potential flaring. During the initial rearrangement of the field strong plasma turbulence develops. Following the impulsive phase, the final current sheet will experience faster reconnection which we believe responsible for the gradual phase of the flare. The reconnection will dissipate part of the current and will produce sustained and extended heating in the flare region and in the postflare loops.
    Keywords: SOLAR PHYSICS
    Type: SSL-PREPRINT-90-119 , Alabama Univ., Data Evaluation, Analysis, and Scientific Study; 24 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A model of filament formation based on the condensation of coronal arches is described. The condensation results from initiating the radiative instability within an arch by superimposing a transient energy supply upon the steady state heating mechanism. The transient energy supply increases the density within the arch so that when it is removed the radiative losses are sufficient to lead to cooling below the minimum in the power loss curve. Times from the initial formation of the condensation to its temperature stabilization as a cool filament have been calculated for various initial conditions. They lie in the range 10,000-100,000 s with the majority of the time spent above a temperature of 1 x 10 to the 6th K. Under the assumption that the condensation of a single arch forms an element of the filament, a complete filament requires the condensation of an arcade of loops. Using experimentally derived parameters, filament densities of 10 to the 11th to 10 to the 12th per cu cm can be obtained.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics; 81; Dec. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A concept and an apparatus designed to investigate the reflected and transmitted distributions of light from optically thick clouds is presented. The Cloud Field Optical Simulator (CFOS) is a laboratory device which utilizes an array of incandescent lamps as a source, simulated clouds made from cotton or styrofoam as targets, and an array of silicon photodiodes as detectors. The device allows virtually any source-target-detector geometry to be examined. Similitude between real clouds and their CFOS cotton or styrofoam counterparts is established by relying on a linear relationship between optical depth and the ratio of reflected to transmitted light for a semiinfinite layer. Comparisons of principal plane radiances observed by the CFOS with Monte Carlo computations for a water cloud at 0.7 micron show excellent agreement. Initial applications of the CFOS are discussed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate and Applied Meteorology (ISSN 0733-3021); 22; May 1983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Coordinated high-resolution (1-3 arcsec) observations of two active solar regions (H 421 and H 419) on November 16, 1979, are reported: soft-X-ray filtergrams from a sounding rocket flight, VLA total-intensity and circular-polarization microwave (6-cm) radio maps, KPNO full-disk photospheric magnetograms, and BBSO H-alpha data. The images were converted to 4.8-arcsec/mm-scale transparencies and coaligned on the basis of sunspot positions for comparison. The two active regions are characterized in detail, and intensity, size, and polarization data for the brightest microwave components (BMC) are listed. It is found that 19 of the 32 BMC are farther than 5 arcsec from any sunspot, and that X-ray-emitting structures only rarely correspond to sunspots, or BMC. About one third of the BMC are located at the feet or legs of coronal loops smaller than about 50,000 km. The limitations implied by these obervations for proposed thermal-bremsstrahlung, thermal-gyro-resonance, and nonthermal microwave-emission mechanisms are discussed.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 85; June 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: A real-time imaging system for displaying the solar coronal soft X-ray emission, focussed by a grazing incidence telescope, is described. The design parameters of the system, which is to be used primarily as part of a real-time control system for a sounding rocket experiment, are identified. Their achievement with a system consisting of a microchannel plate, for the conversion of X-rays into visible light, and a slow-scan vidicon, for recording and transmission of the integrated images, is described in detail. The system has a quantum efficiency better than 8 deg above 8 A, a dynamic range of 1000 coupled with a sensitivity to single photoelectrons, and provides a spatial resolution of 15 arc seconds over a field of view of 40 x 40 square arc minutes. The incident radiation is filtered to eliminate wavelengths longer than 100 A. Each image contains 3.93 x 10 to the 5th bits of information and is transmitted to the ground where it is processed by a mini-computer and displayed in real-time on a standard TV monitor.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Space Science Instrumentation; 5; Dec. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...