ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
Collection
Publisher
  • 1
    Publication Date: 2017-12-19
    Description: Highlights • Melt inclusions from Klyuchevskoy were homogenized at 1150 °C and PH2O=500 MPaPH2O=500 MPa. • High-P experiments can recover initial H2O and CO2 contents in dehydrated inclusions. • Isothermal (de)hydration results in linear trend of CO2 and H2O in inclusion glasses. • Parental Klyuchevskoy magmas contain ∼3800 ppm CO2 and 4–5 wt.% H2O. • At least 80% of CO2 is slab-derived in the Klyuchevskoy magmas with CO2/Nb ∼3000. Abstract Reliable evaluation of CO2 contents in parental arc magmas, which can be preserved in melt inclusions in phenocrysts, is required to verify the proposed efficiency of CO2 recycling at convergent margins. Quantification of bulk CO2 concentration in melt inclusions requires their complete homogenization. Using samples from lavas from the Bulochka vent of Klyuchevskoy Volcano (Kamchatka), we applied a novel experimental approach to homogenize and re-equilibrate naturally dehydrated (〈1 wt.% H2O) melt inclusions from high-Fo (85–91 mol.%) olivine. The experiments were performed at temperatures of 1150–1400 °C, pressures of up to 500 MPa, under dry to H2O-saturated conditions and with oxygen fugacity ranging from CCO to QFM+3.3. No homogenization was achieved at dry conditions. Complete dissolution of fluid bubbles (homogenization) in the melt inclusions was achieved at H2O pressures of 500 MPa and temperature of 1150 °C, when water content in the melt inclusions reached 4–5 wt.% H2O. The CO2 content in the homogenized inclusions is 3800±140 ppm3800±140 ppm and CO2/Nb = 3000 ± 420, which are the highest values reported so far for the typical middle-K primitive arc melts and fall within the range of values inferred from the magmatic flux and volcanic gas data for primary arc magma compositions. About 83% of the CO2 in Klyuchevskoy magmas is likely to be derived from the subducting slab and can be attributed to flux melting with a fluid having a CO2/H2O ratio of ∼0.06. The H2O and CO2 contents in the melt inclusions after hydrous experiments were found to correlate positively with each other and negatively with the volume of fluid bubble, reflecting increasing internal pressure in melt inclusions with increasing melt hydration. Therefore, similar trends observed in some natural sets of melt inclusions can be attributed to a partial dehydration of melts after entrapment, operating simultaneously with or following post-entrapment crystallization. Our study implies that the process of post-entrapment dehydration can be completely reversed under high pressure experimental conditions. If temperature, redox conditions and pressure of melt inclusion entrapment can be independently estimated, then our novel experimental approach (homogenization at high H2O pressure) can be used to reconstruct the initial CO2 content and also the entire composition of melt inclusions in olivine, including their initial H2O content, from any type of volcanic rock. With this approach volatiles in ancient lavas can also be determined, expanding our knowledge of volatile recycling further back in Earth history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-08
    Description: Melt inclusions in olivine are source of unique information about primitive mantle melts. Here we report results of an experimental study aimed at evaluating the ability of olivine to isolate chemically melt inclusions from the host magma after their entrapment. We demonstrate that nearly ‘dry’ melt inclusions from Galapagos Plateau basalt can gain up to 2.5 wt.% of water if they are placed for 2 days in a water-bearing melt at 200 MPa and 1140 °C. The major element composition of melt inclusions also changed significantly, as a result of a re-equilibration with the olivine host mineral, whereas no significant changes were detected for incompatible trace elements. Our results indicate that inclusions in olivine can rapidly and selectively exchange water with the matrix melt, probably, through combination of proton diffusion and molecular water transport along dislocations in olivine. The fast water transport explains element fractionation, which is not predictable from the theory of magmatic processes. An efficient re-equilibration of melt inclusions with matrix melt can explain the decoupling of water and incompatible trace elements (e.g., H2O vs. K2O) reported for suites of primitive inclusions from mid-ocean-ridge setting and island arcs. Rare cases of well preservation of initial water content in suites of co-genetic inclusions imply very short residence time (a few hours) of the olivine phenocrysts in magma with contrasting water content during fractionation and transport to the surface and rapid quenching upon eruption
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-17
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-23
    Description: Phase equilibria simulations were performed on naturally quenched basaltic glasses to determine crystallization conditions prior to eruption of magmas at the Mid-Atlantic Ridge (MAR) east of Ascension Island (7–11°S). The results indicate that mid-ocean ridge basalt (MORB) magmas beneath different segments of the MAR have crystallized over a wide range of pressures (100–900 MPa). However, each segment seems to have a specific crystallization history. Nearly isobaric crystallization conditions (100–300 MPa) were obtained for the geochemically enriched MORB magmas of the central segments, whereas normal (N)-MORB magmas of the bounding segments are characterized by polybaric crystallization conditions (200–900 MPa). In addition, our results demonstrate close to anhydrous crystallization conditions of N-MORBs, whereas geochemically enriched MORBs were successfully modeled in the presence of 0·4–1 wt% H2O in the parental melts. These estimates are in agreement with direct (Fourier transform IR) measurements of H2O abundances in basaltic glasses and melt inclusions for selected samples. Water contents determined in the parental melts are in the range 0·04–0·09 and 0·30–0·55 wt% H2O for depleted and enriched MORBs, respectively. Our results are in general agreement (within ±200 MPa) with previous approaches used to evaluate pressure estimates in MORB. However, the determination of pre-eruptive conditions of MORBs, including temperature and water content in addition to pressure, requires the improvement of magma crystallization models to simulate liquid lines of descent in the presence of small amounts of water.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: KALMAR - Second Bilateral Workshop on Russian-German Cooperation on Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems, 16.05.-20.05.2011, Trier . KALMAR - Kurile-Kamchatka-Aleutean Marginal Sea - Island Systems : Program and Abstracts ; Workshop in Russian-German Cooperation, May 16 - 20, 2011 Trier, Germany ; pp. 26-27 .
    Publication Date: 2020-11-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Highlights • New experiments with melt inclusions in olivine at 1200 °C and 300 MPa. • Coupled behavior H2O and SiO2 in inclusions during re-hydration and dehydration. • SiO2 mobility results from formation/destruction of metal vacant olivine. • SiO2-undersaturated arc melt inclusions may originate by dehydration. • New method to assess initial H2O in dehydrated inclusions. Abstract Primary subduction-related magmas build up modern continental crust and counterbalance massive recycling of crustal material into the deep mantle occurring at this tectonic setting. Melt inclusions in Mg-rich olivine are believed to be the best probes of primary subduction-related melts. However, unexpectedly, most of such inclusions are SiO2-undersaturated, in contrast to predominantly SiO2-saturated island-arc rocks. The origin of these melts has been explained by melting of amphibole-bearing pyroxenites in the lower crust or upper mantle. The current models fail, however, to explain the high abundance of SiO2-undersaturated melts as well as their compositional difference with host rocks for the major elements but not for incompatible trace elements. Here we report results from the investigation of rocks and melt inclusions in olivine from Klyuchevskoy volcano in Kamchatka. We show that experimental re-hydration of SiO2-undersaturated melt inclusions in olivine Fo85−90 at 300 MPa pressure and 1200 °C causes a concomitant enrichment of melt in H2O and SiO2 so that re-hydrated inclusions (4–5 wt% H2O) become as silica-saturated as primitive Klyuchevskoy rocks. An experimental dehydration of previously re-hydrated inclusions also resulted in coupled depletion of melt in H2O and SiO2. The estimated stoichiometry of SiO2 and H2O gain/loss is consistent with dissolution/crystallization of metal-defect olivine on inclusion walls. The migration mechanism of water is controlled by hydrogen diffusion in the octahedral metal (Mg, Fe) vacancies through olivine structure as confirmed by FTIR spectroscopy. We conclude that the previously reported SiO2-undersaturated composition of many melt inclusions from hypersthene-normative island-arc rocks can be explained by the coupled loss of up to several weight percent of H2O and SiO2 from the initially trapped primitive SiO2-saturated hydrous melts. Thus, SiO2-undersaturated melt inclusions may not be representative of primitive island-arc magmas. The discovery of the coupled SiO2 and H2O loss from inclusions allowed us to propose a method for reconstruction of the initial water content even for completely dehydrated inclusions. The results of this study may indicate that the majority of primitive island-arc inclusions have not preserved their initial H2O content, and that primary arc melts contain on average ≥4 wt% H2O. The higher H2O concentration in primary arc melts implies the existence of a ‘crustal filter’ controlling the water content, which can be preserved in melt inclusions, and also the lower mantle melting temperatures and higher output H2O fluxes in subduction zones than previously estimated based on direct determination of H2O in potentially dehydrated melt inclusions.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Assessing the N content of arc magmas and their mantle source remains a challenge because the volatile element composition of melts and gases can be modified during magma ascent, storage, and eruption. Given that melt inclusions (MIs) in Mg-rich olivine represent the best proxies for primary arc melts, we applied, for the first time, an in situ high-resolution secondary ion mass spectrometry (SIMS) method to determine the N concentration in olivine-hosted MIs from Klyuchevskoy volcano in Kamchatka. To reverse the effects of post-entrapment modification processes (i.e., exsolution of volatiles into a fluid bubble), the MIs were partially to completely homogenized at high temperatures (1150–1400 °C) and pressures ranging from 0.1 to 500 MPa under dry to H2O-saturated conditions at variable oxygen fugacities (CCO to QFM + 3.3). After the experiments, N concentrations in water-rich MI glasses correlate positively with H2O and CO2 contents as well as with N/CO2 ratios, and negatively with the volume of the remaining fluid bubble. Glasses of completely homogenized (fluid bubble-free) MIs contain up to 25.7 ± 0.5 ppm N, whereas glasses of three unheated (natural, bubble-bearing) MIs have significantly lower N concentrations of ~1 ± 0.3 ppm. The N-CO2-Nb characteristics of completely homogenized MIs indicate that melts feeding Klyuchevskoy volcano have high absolute concentrations of both N and CO2, as well as large excess of these volatiles relative to Nb, compared to primary mid-ocean ridge melts. This implies that large amounts of N and CO2 in Klyuchevskoy melts and their mantle source are derived from the subducting slab, and that these subducted volatiles are (partially) returned to the crust and atmosphere by arc-related magmatism.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...