ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.
    Keywords: OCEANOGRAPHY
    Type: NASA. Goddard Space Flight Center, Proceedings of the Ocean Climate Data Workshop; p 51-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-13
    Description: Cyclone activity and life cycle are analysed in the coupled GCMs ECHAM5/OM and ECHAM4/OPYC3. First, the results for the present climate (1978–1999) are compared with ERA-40 and NCEP/NCAR reanalyses, showing a drastic improvement in the representation of cyclone activity in ECHAM5/OM compared to ECHAM4/OPYC3. The total number of cyclones, cyclone intensity, propagation velocity and deepening rates are found to be much more realistic in ECHAM5/OM relative to ECHAM4/OPYC3. Then, changes in extra tropical cyclone characteristics are compared between present day climate and future climate under the emission-scenario A1B using ECHAM5/OM. This comparison is performed using the 20-year time slices 1978–1999, 2070–2090 and 2170–2190, which were considered to be representative for the various climate conditions. The total number of cyclones does not undergo significant changes in a warmer climate. However, regional changes in cyclone numbers and frequencies are evident. One example is the Mediterranean region where the number of cyclones in summer increases almost by factor 2. Some noticeable changes are also found in cyclone life cycle characteristics (deepening rate and propagation velocity). Cyclones in the future climate scenario tend to move slower and their deepening rate becomes stronger, while cyclone intensity does not undergo significant change in a warmer climate. Generally, our results do not support the hypothesis of enhanced storminess under future climate conditions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 521 (7553). pp. 428-430.
    Publication Date: 2017-12-19
    Description: An index of water-circulation strength in the North Atlantic Ocean has been derived from sea-level measurements. This provides fresh evidence of the ocean's leading role in multidecadal climate variability. See Letter p.508
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Other] In: Cloud Climatology Assessment Workshop, 06.04, Madison, Wisconsin, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elevier
    In:  Physics and Chemistry of the Earth, 23 (5-6). pp. 587-592.
    Publication Date: 2017-01-03
    Description: Three different sources of the wave data - visual observations from the voluntary observing ships, wave hindcast from the WAM model driven by European Reanalysis Project winds, and the altimeter measurements from GEOSAT, TOPEX/POSEIDON and ERS-1 are used for the intercomparison of the North Atlantic wave fields for the period 1979–1993. Climatological spatial patterns of significant wave height seen in all three products are consistent, although the actual quantitative values indicate both positive and negative biases of about 0.1 to 0.8 m. Sea and swell heights are intercompared separately for the voluntary observing ship and WAM model data. Best agreement between the visually observed data, the model hindcast and the altimeter measurements is obtained in the North Atlantic mid latitudes. However, long-term wave height trends in the merchant ship and the WAM model data are quite different. The nature of the differences in these estimates is discussed.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  International Journal of Climatology, 27 . pp. 1707-1719.
    Publication Date: 2018-07-23
    Description: The paper inter-compares the total cloud cover over the World Ocean from marine visual observations assimilated in the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and National Centers of Environmental Prediction/National Center of Atmospheric Research (NCEP-NCAR) reanalysis. The Intercomparison covers the period from 1948 to 2002. NCEP-NCAR reanalysis shows about 10% of fractional cloud cover smaller than the visual observations do. The largest differences are observed in the mid and sub-polar latitudes. In the tropics, NCEP-NCAR data show slightly higher cloud cover then ICOADS. These systematic differences are quite persistent through the year with somewhat stronger differences in summer. Comparison of the characteristics of inter-annual variability shows little consistency between visually observed total cloud cover and total cloudiness diagnosed by the reanalysis. Linear trends are primarily positive in the ICOADS cloud data, while in the NCEP-NCAR reanalysis they show downward trends in the tropics and upward tendencies in the mid and high latitudes. Analysis of the effect of sampling in ICOADS shows that sampling inhomogeneity cannot fully explain the disagreements observed. At the same time, the major climate variability patterns such as North Atlantic Oscillation (NAO) and El-Nino—Southern Oscillation (ENSO) are well captured in both ICOADS and NCEP-NCAR cloud cover data sets
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  International WOCE Newsletter, 24 . pp. 12-15.
    Publication Date: 2017-07-03
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  WGSF/WCRP Flux News, 1 . pp. 11-13.
    Publication Date: 2016-04-26
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-18
    Description: The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970–1999 and 2000–2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000–2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970–1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Nearly 50 years ago Bjerknes1 suggested that the character of large-scale air–sea interaction over the mid-latitude North Atlantic Ocean differs with timescales: the atmosphere was thought to drive directly most short-term—interannual—sea surface temperature (SST) variability, and the ocean to contribute significantly to long-term—multidecadal—SST and potentially atmospheric variability. Although the conjecture for short timescales is well accepted, understanding Atlantic multidecadal variability (AMV) of SST2, 3 remains a challenge as a result of limited ocean observations. AMV is nonetheless of major socio-economic importance because it is linked to important climate phenomena such as Atlantic hurricane activity and Sahel rainfall, and it hinders the detection of anthropogenic signals in the North Atlantic sector4, 5, 6. Direct evidence of the oceanic influence of AMV can only be provided by surface heat fluxes, the language of ocean–atmosphere communication. Here we provide observational evidence that in the mid-latitude North Atlantic and on timescales longer than 10 years, surface turbulent heat fluxes are indeed driven by the ocean and may force the atmosphere, whereas on shorter timescales the converse is true, thereby confirming the Bjerknes conjecture. This result, although strongest in boreal winter, is found in all seasons. Our findings suggest that the predictability of mid-latitude North Atlantic air–sea interaction could extend beyond the ocean to the climate of surrounding continents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...