ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The termolecular reaction involving concerted hydrogen-atom exchange between three HF molecules was investigated with particular attention given to the effects of correlation at the various stationary points along the reaction. Using large segmented Gaussian basis sets to locate the (HF)3 stationary points at the SCF level, the geometries of the stable hydrogen-bonded trimer, which is of C(3h) symmetry, were located, together with the transition state for hydrogen exchange, which is of D(3h) symmetry. Then, using a large atomic natural orbital basis and correlating all valence electrons, the energetics of the exchange reaction were evaluated at the correlated level.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: Journal of Chemical Physics (ISSN 0021-9606); 96; 2920-292
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: Eloret Corp., Theoretical Research Program to Study Chemical Reactions in AOTV Bow Shock Tubes; 13 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: We describe a Direct Linear Algebraic Deconvolution (DLAD) approach to imaging of data from Compton gamma-ray telescopes. Imposition of the additional physical constraint, that all components of the model be non-negative, has been found to have a powerful effect in stabilizing the results, giving spatial resolution at or near the instrumental limit. A companion paper (Dixon et al. 1993) presents preliminary images of the Crab Nebula region using data from COMPTEL on the Compton Gamma-Ray Observatory.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.
    Keywords: Metals and Metallic Materials
    Type: E-17793 , The Journal of Physical Chemistry C; 114; 46; 19704-19713
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed: this is followed by engineering design, fabrication, and testing to validate the overall design process. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
    Keywords: Numerical Analysis
    Type: American Nuclear Society (ANS) Space Nuclear Conference (SNC) 2007; Jun 24, 2007 - Jun 28, 2007; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Space Technology and Applications International Forum, STAIF-2008; Feb 10, 2008 - Feb 14, 2008; , Albuquerque, NM
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
    Keywords: Nuclear Physics
    Type: Paper 2047 , American Nuclear Society Space Nuclear Conference (SNC) 2007; Jun 24, 2007 - Jun 28, 2007; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the development of a simulator for non-nuclear tests for the development of a space nuclear power system. The development of the Instrumented Thermal Simulator is to assist in developing an understanding of individual components and integrated system operation without the cost, time, safety concerns associated with nuclear testing. The presentation shows the design, the electrical integration, the hardware, and the assembly of the simulators. There are slides that show the test plan, the analysis, and the initial results.
    Keywords: Spacecraft Propulsion and Power
    Type: Space Nuclear Conference (SNC); Jun 24, 2007 - Jun 28, 2007; Boston, MA; United States|American Nuclear Society (ANS); Jun 24, 2007 - Jun 28, 2007; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Analytic derivative techniques are utilized to determine molecular geometries, vibration spectra, molecular force field, proton affinity, and energetics of clustering of protonated methane. It is observed that the geometries are gradient optimized, while the harmonic force fields and IR intensities are also determined analytically at the SCF level. It is determined that the frequency of the torsional model for rotation of the H2 about the pseudothreefold axis of the CH3(+) group is extremely low, and the proton affinity of CH4 is calculated as 129.0 kcal/mol.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: Journal of Chemical Physics (ISSN 0021-9606); 86; 5625-563
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...