ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2013-08-31
    Description: Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Washington, Scientific Assessment of Stratospheric Ozone: 1989, Volume 1; p 401-466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-23
    Description: Chemical reaction with hydroxyl radicals formed in the troposphere from ozone photolysis in the presence of methane, carbon monoxide and nitrogen oxides provides an important removal mechanism for halocarbons containing C-H and C = C double bonds. The isotropic distribution in atmospheric carbon monoxide was used to quantify the tropospheric hydroxyl radical distribution. Here, this methodology is reevaluated in the light of recent chemical kinetic data evaluations and new understandings gained in the life cycles of methane and carbon monoxide. None of these changes has forced a significant revision in the CO-14 approach. However, it is somewhat more clearly apparent how important basic chemical kinetic data are to the accurate establishment of the tropospheric hydroxyl radical distribution.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Washington, Scientific Assessment of Stratospheric Ozone: 1989, Volume 2. Appendix: AFEAS Report; p 125-146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...