ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
  • Other Sources  (2)
Years
  • 1
    Publication Date: 2021-05-04
    Description: The small Hawaiian sepiolid Euprymna scolopes, with its symbiotic luminous bacterium Vibrio fischeri, was cultured through one complete life cycle in 4 months. Paralarval squid hatchlings were actively planktonic for the first 20-30 days, after which they settled and assumed the typical adult mode of nocturnal activity and diurnal quiescence. Squids were aggressive predators that preferred actively swimming prey up to 2-4 times their size; the only diet that yielded good survival and rapid growth for paralarvae was large adult mysids. Survival to settlement was 73% on this diet, whereas it was 0%-17% on controls and three other diets. Paralarvae initially lacked both detectable luminescence and V. fischeri cells in their incipient light organs; all remaining stages produced luminescence, and their light organs were colonized by apparently pure cultures of 〉 105 V. fischeri typical of E. scolopes symbiont strains. Survival from settlement to sexual maturity was 76%. Mating and egg laying commenced at 2 months, yet attempts to culture the next laboratory generation of hatchlings were not as successful. The results indicate that the host organism of this symbiosis can soon be cultured with consistency through its brief life cycle, thus opening new avenues of research into developmental aspects of this symbiosis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-28
    Description: The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...