ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have been made in terms of understanding how cells generate, transmit and sense mechanical tension, as well as how they use these forces to control their shape and behavior. An integrated view of cell regulation that incorporates mechanics and structure as well as chemistry is beginning to emerge.
    Keywords: Life Sciences (General)
    Type: Current opinion in cell biology (ISSN 0955-0674); Volume 10; 2; 232-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: OBJECTIVE: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response. DESIGN: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity. RESULTS: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level. CONCLUSION: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system.
    Keywords: Life Sciences (General)
    Type: Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society (ISSN 1063-4584); Volume 7; 1; 81-94
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Trends in cell biology (ISSN 0962-8924); Volume 9; 7; 283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: A numerical method based on the axisymmetric, incompressible Navier-Stokes equations is combined with a lifting surface code to predict the vortex wake of hovering rotors. The lifting surface code, AMI Hover, is used to obtain the circulation distribution on the blade. This circulation distribution is fed into the Navier-Stokes code to compute the vortex wake under this specified circulation distribution. An iteration approach is used between these two codes to converge the circulation distribution and the shape of the vortex wake. A relaxation scheme is developed to resolve the instability encountered among the tip vortices. A reconcentration scheme is used to solve the diffusion problem due to the strong artificial viscosity. The results from the present method are compared with experimental data obtained by smoke-flow visualization and hot-wire measurements for several rotor blade configurations. The comparisons show that the present method is able to predict the complex wake system shed by a hovering rotor.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 87-1245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: A computational method has been developed for the study of the post-ignition transients in hybrid rocket systems. The particular system chosen consisted of a gaseous oxidizer flowing within a tube of solid fuel, resulting in heterogeneous combustion. With the appropriate assumptions, two-dimensional, time-dependent conservation equations were derived for the reacting gas phase, and for the solid phase, in a cylindrical coordinate system. These were then programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and the Crank-Nicolson scheme for the solid phase. Appropriate initial and boundary conditions were represented, including heat and mass conservation at the interface between gas and solid. Initially, no attempt was made to relate the recession rate at the surface to the surface temperature, or to include heat transfer by radiation. A simple case was selected for preliminary calculations, with aluminum and oxygen as fuel and oxidizer, and aluminum oxide as the product.
    Keywords: PROPULSION SYSTEMS
    Type: Journal of Computational Physics; 9; Apr. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
    Keywords: THERMODYNAMICS AND COMBUSTION
    Type: NASA-CR-112201 , AEEP-4041-106-72U
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Sequential development of quadratic polynomial into Liapunov function for nonlinear differential equations
    Keywords: MATHEMATICS
    Type: NASA-CR-687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Use of auxiliary differential equations derived from nonlinear differential equations to find Lyapunov function
    Keywords: MATHEMATICS
    Type: NASA-CR-799
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Reduction procedure for determining sign definiteness and semidefiniteness of higher order real polynomials
    Keywords: MATHEMATICS
    Type: ; YAL SOCIETY (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Plasma waves parametric excitation by external electric field, using perturbation method of multitime scales
    Keywords: PHYSICS, PLASMA
    Type: ; YAL SOCIETY (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...