ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
Collection
Years
  • 1
    Publication Date: 2019-03-13
    Description: This article describes one of the first successful examples of multisensor, multivariate land data assimilation, encompassing a large suite of soil moisture, snow depth, snow cover and irrigation intensity environmental data records (EDRs) from Scanning Multi-channel Mi-crowave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), the Advanced Scatterometer (ASCAT), the Moderate-Resolution Imaging Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission and the Soil Moisture Active Passive (SMAP) mission. The analysis is performed using the NASA Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The performance of NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing to a number of hydrological reference data products. Results indicate that multivariate assimilation provides systematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of simulated streamow and ET. An important conclusion is that across all evaluated variables, assimilation of data from increasingly more modern sensors (e.g. SMOS, SMAP, AMSR2, ASCAT) produces more skillful results than assimilation of data from older sensors (e.g. SMMR, SSM/I, AMSR-E). The evaluation also indicates high skill of NCA-LDAS when compared with other LSM products. Further, drought indicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of Western U.S. during 1979-2015, particularly in the Southwestern U.S., consistent with the trends from the US drought monitor, albeit for a shorter 2000-2015 time period.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN54682 , Journal of Hydrometeorology (ISSN 1525-755X ) (e-ISSN 1525-7541)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Most land surface models used today require estimates of aerodynamic roughness length in order to characterize momentum transfer between the surface and atmosphere. The most common method of prescribing roughness is through the use of empirical look-up tables based solely on land cover class. Theoretical approaches that employ satellite-based estimates of canopy density present an attractive alternative to current look-up table approaches based on vegetation cover type that do not account for within-class variability and are oftentimes simplistic with respect to temporal variability. The current research applies Raupach s formulation of momentum aerodynamic roughness to MODIS data on a regional scale in order to estimate seasonally variable roughness and zero-plane displacement height fields using bulk land cover parameters estimated by [Jasinski, M.F., Borak, J., Crago, R., 2005. Bulk surface momentum parameters for satellite-derived vegetation fields. Agric. For. Meteorol. 133, 55-68]. Results indicate promising advances over look-up approaches with respect to characterization of vegetation roughness variability in land surface and atmospheric circulation models.
    Keywords: Earth Resources and Remote Sensing
    Type: Agricultural and Forest Meteorology (ISSN 0168-1923); Volume 135; 252-268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The bulk aerodynamic parameters associated with the absorption of surface momentum by vegetated landscapes are theoretically estimated within the context of Raupach's roughness sublayer formulation. The parameters include the bulk plant drag coefficient, maximum u*/U(sub h), sheltering coefficient, and canopy area density at onset of sheltering. Parameters are estimated for the four principal IGBP land cover classes within the U.S. Southern Great Plains: evergreen needleleaf forests, grasslands, croplands, and open shrublands. The estimation approach applies the Method of Moments to roughness data from several international field experiments and other published sources. The results provide the necessary land surface parameters for satellite-based estimation of momentum aerodynamic roughness length and zero-plane displacement height for seasonally variable vegetation fields employed in most terrestrial and atmospheric simulation models used today. Construction of sample displacement and roughness maps over the Southern United States using MODIS land products demonstrates the potential of this approach for regional to global applications.
    Keywords: Earth Resources and Remote Sensing
    Type: Agricultural and Forest Meteorology (ISSN 0168-1923); Volume 133; 55-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.
    Keywords: Earth Resources and Remote Sensing
    Type: Submitted to Agricultural and Forest Meteorology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The sensitivity of mesoscale weather prediction model to a vegetation roughness initialization is investigated for the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database previously derived using a physically based procedure and MODIS imagery, and iii) a MODIS climatologic roughness database that possesses the same spatial heterogeneity as (i) but with mean land class values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations from meteorological stations within the Oklahoma mesonet and surrounding region during IHOP20O2. A sensitivity analysis on the impact the MODIS-based roughness fields is also made through a time-series intercomparison of temperature bias, probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE) the results that, for the current replacement of the standard land-cover type based roughness values with the satellite-derived fields statistically improves model performance for most of the observed variables. Further, the satellite-based roughness enhances the surface wind speed, PBL height and TKE production on the order of 3 to l0 percent, with a lesser effect over grassland and cropland domains, and the greater effect over mixed land cover domains
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately streamflow. For the Distributed Model Intercomparison Project - Phase 2 Western basins, we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service (NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer (SAC-HT) model inside the National Aeronautics and Space Administration's (NASA) Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE) values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two fully distributed ways: 1) we update the curve by attempting SWE preservation, and 2) we reconstruct SWEs using the curve. The preceding are refinements of an existing simple, conceptually-guided NWS algorithm. Satellite fSCA over dense forests inadequately accounts for below-canopy snow, degrading simulated streamflow upon assimilation during snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This simplistic allowance and direct insertion are found to be inadequate for improving calibrated results, still degrading them as mentioned above. However, for streamflow volume for the uncalibrated runs, we obtain: (1) substantial to major improvements (64-81 %) as a percentage of the control run residuals (or distance from observations), and (2) minor improvements (16-22 %) as a percentage of observed values. We highlight the need for detailed representations of canopy-snow optical radiative transfer processes in mountainous, dense forest regions if assimilation-based improvements are to be seen in calibrated runs over these areas.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.7027.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0096
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The sensitivity of a mesoscale weather prediction model to a 1 km satellite-based vegetation roughness initialization is investigated for a domain within the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database, specific to the domain, that was previously derived using a physically based procedure and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, and iii) a MODIS climatologic roughness database that like (i) is a function only of land cover type, but possesses domain specific mean values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations within a domain including Oklahoma, Eastern Arkansas, and Northwest Louisiana during a 4-day period within IHOP 2002. Sensitivity analysis compares the impact the three roughness initializations on time-series temperature, precipitation probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE). Overall, the results indicate that, for the current investigation, replacement of the standard look-up table values with the satellite-derived values statistically improves model performance for most observed variables. Such natural roughness heterogeneity enhances the surface wind speed, PBL height and TKE production up to 10 percent, with a lesser effect over grassland, and greater effect over mixed land cover domains.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.4322.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...