ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1
    Publication Date: 2018-09-03
    Description: We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. Aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute to global sea level rise between 1.9 and 13.0cm until the year 2100 and between 3.5 and 76.4cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7cm, and in the year 2300 it ranges from 1.7 to 21.8cm. Additionally, taking Helheim and Store Glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: The ice stream geometry and large ice surface velocities at the onset region of the Northeast Greenland Ice Stream (NEGIS) are not yet well reproduced by ice sheet models. The quantification of basal sliding and a parametrization of basal conditions remains a major gap. In this study, we assess the basal conditions of the onset region of the NEGIS in a systematic analysis of airborne ultra‐wideband radar data. We evaluate basal roughness and basal return echoes in the context of the current ice stream geometry and ice surface velocity. We observe a change from a smooth to a rougher bed where the ice stream widens, and a distinct roughness anisotropy, indicating a preferred orientation of subglacial structures. In the upstream region, the excess ice mass flux through the shear margins is evacuated by ice flow acceleration and along‐flow stretching of the ice. At the downstream part, the generally rougher bed topography correlates with a decrease in flow acceleration and lateral variations in ice surface velocity. Together with basal water routing pathways, this hints to two different zones in this part of the NEGIS: the upstream region collecting water, with a reduced basal traction, and downstream, where the ice stream is slowing down and is widening on a rougher bed, with a distribution of basal water toward the shear margins. Our findings support the hypothesis that the NEGIS is strongly interconnected to the subglacial water system in its onset region, but also to the subglacial substrate and morphology.
    Description: Plain Language Summary: The Northeast Greenland Ice Stream (NEGIS) transports a large amount of ice mass from the interior of the Greenland Ice Sheet (GrIS) toward the ocean. The extent and geometry of the NEGIS are difficult to reproduce in current ice sheet models because many boundary conditions, such as the properties of the ice base, are not well known. In this study, we present new characteristics of the ice base from the onset region of the NEGIS derived by airborne radio‐echo sounding data. Our data yield a smooth and increasingly lubricated bed in the upstream part of our survey area, which enables the ice to accelerate. Our results confirm the hypothesis that the position of the ice stream boundaries are coupled to the subglacial hydrology system.
    Description: Key Points: Basal roughness at the onset of the NEGIS hints to a geomorphic anisotropy and a change in the geomorphological regime. Basal water is funneled into the ice stream upstream and redistributed toward the shear margins further downstream. A smooth and progressively lubricated bed reduces basal traction and favors the acceleration of the NEGIS at its onset.
    Description: A. P. Møller Foundation
    Description: US National Science Foundation
    Description: Alfred Wegener Institute
    Description: National Institute of Polar Research and Arctic Challenge for Sustainability
    Description: University of Bergen and Bergen Research Foundation
    Description: Swiss National Science Foundation
    Description: French Polar Institute Paul‐Emile Victor
    Description: Chinese Academy of Sciences and Beijing Normal University
    Description: NASA Operation IceBridge
    Description: NSF
    Keywords: 551.34 ; basal roughness ; bed conditions ; Greenland Ice Sheet ; ice stream ; Northeast Greenland Ice Stream ; radio‐echo sounding
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...