ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
    Keywords: Environment Pollution
    Type: Measurement science & technology (ISSN 0957-0233); Volume 9; 4; 545-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.
    Keywords: Aerospace Medicine
    Type: Bone (ISSN 8756-3282); Volume 31; 1; 149-57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Knowledge of the global scale distribution of atmospheric ozone and its temporal variability can be achieved using a satellite-based nadir-viewing device making high spectral resolution measurements with high signal-to-noise ratios. This would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface and interfering species. The Fabry-Perot interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. The periodic nature of the Fabry-Perot instrument function can be advantageous when observation of periodic spectra is desired. However, for most applications, additional optical elements are necessary to reduce the effect of unwanted passbands. This is frequently accomplished using additional Fabry-Perot etalons in a series configuration in conjunction with a bandpass filter. This paper discusses a Fabry-Perot interferometer conceptual instrument design to achieve tropospheric and total ozone monitoring capability from a satellite-based nadir-viewing geometry. The design involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). The impact of inter-etalon reflections has been reduced to acceptable levels by placement of a slightly attenuating medium in between the etalons. A passive device is selected for low power consumption, and continuous day/night coverage, independent of solar zenith angle, is enabled by observing within the strong 9.6 micron ozone infrared band. The IR-FPI detection will be performed through implementation of the new Circle to Line Interferometer Optical (CLIO) system, developed by researchers at the Space Physics Research Laboratory (SPRL) of the University of Michigan, to accomplish focal plane fringe detection; the CLIO system converts the circular interferometric fringes into a linear pattern which then can be detected by conventional linear array detectors. A multiplex signal advantage is achievable as all necessary frequencies can be measured simultaneously using a multichannel configuration. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance.
    Keywords: Geophysics
    Type: Optical Remote Sensing of the Atmosphere, Volume 2; 199-202; LC-95-67220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Observed formaldehyde column densities of 1 x 10 to the 12th - 3 x 10 to the 13th/sq cm in cloud envelopes along lines of sight with A(V) = 1-4 mag can not be explained with the current understanding of interstellar gas phase chemistry. However, these column densities can be reproduced by a simple time-dependent model in which H2CO is supplied to the gas phase by the erosion of icy grain mantles. The release of H2CO from the grain mantles must occur on time scales comparable to the time scales for mixing from the cloud interior to the cloud envelope. Thus, in low-density regions of clouds, it appears that formaldehyde is the second molecule whose gas phase source is primarily ejection from grains. This simple model suggests understanding gas phase steady state in clouds on macroscopic, rather than microscopic, spatial scales.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 375; 157-162
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: A high-resolution (0.059/cm) M-band spectrum has been obtained of the embedded young stellar object GL490. The spectrum shows interstellar absorption in the fundamental vibrational band, v = 1-0, of (C-12)O. Two strong and narrow (10 km/s) velocity components are present. One, at the velocity of GL490 (vLSR = -16 km/s), is likely gas in the molecular cloud within which GL490 is embedded. The other component is blueshifted by 13 km/s relative to GL490. An observation of emission from the J = 3-2 transition of HCO(+) using a 20-arcsec beam supports the view that the blueshifted gas is near the central object. The -29-km/s feature is interpreted as a recently ejected shell. It is conjectured that the extended outflows of cold molecular gas seen by millimeter CO emission observations are driven by sporadic outbursts rather than by continuous flows from the central object.
    Keywords: ASTRONOMY
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 201; 1, Ju; L16-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Some of the most interesting chemistry in the Solar System involves changes in the oxidation state of the simple carbon species. The chemical pathways for the conversion of CH4 to CO and CO2 are for the most part known. The reverse process, the reduction of CO to CH4, is, however, poorly understood. This is surprising in view of the importance of the reduction process in the chemistry of the Solar System. Recently we investigated the chemical kinetics of a hitherto unsuspected reaction. It is argued that the formation of the methoxy radical (CH3O) from H+H2CO may play an essential role in the reduction of CO to CH4. The rate coefficient for this reaction has been estimated using the approximate theory of J. Troe and transition state theory. We will discuss the implications of this reaction for the chemistry of CO on Jupiter, in the solar nebula, for interpreting the laboratory experiments of A. Bar-Nun and A. Shaviv and A. Bar-Nun and S. Chang, and for organic synthesis in the prebiotic terrestrial atmosphere. The possible relation of CO reduction in the solar nebula and polyoxymethylene observed in comet Halley will be discussed.
    Keywords: SPACE BIOLOGY
    Type: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life; p 38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: A first principles pn junction device model has predicted new designs for high voltage, high efficiency InP solar cells. Measured InP material properties were applied and device parameters (thicknesses and doping) were adjusted to obtain optimal performance designs. Results indicate that p/n InP designs will provide higher voltages and higher energy conversion efficiencies than n/p structures. Improvements to n/p structures for increased efficiency are predicted. These new designs exploit the high absorption capabilities, relatively long diffusion lengths, and modest surface recombination velocities characteristic of InP. Predictions of performance indicate achievable open-circuit voltage values as high as 943 mV for InP and a practical maximum AM0 efficiency of 22.5 percent at 1 sun and 27 C. The details of the model, the optimal InP structure and the effect of individual parameter variations on device performance are presented.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA, Lewis Research Center, Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology; p 79-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The bulk of O sub 3 destruction in the Antarctic stratosphere takes place in the lower stratosphere between 15 and 25 km. Both O sub 3 and the halogen reservoir species have their origins in the higher altitude region (20 to 30 km) in the equatorial and mid-latitude stratosphere. Using the Caltech-JPL two-dimensional residual circulation model, researchers investigate the growth of stratospheric halogen due to the increase of CFCl sub 3 and CF sub 2 Cl sub 2.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 236-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: This paper describes ultra-lightweight, high performance, thin, light trapping GaAs solar cells for advanced space power systems. The device designs can achieve 24.5 percent efficiency at AMO and 1X conditions, corresponding to a power density of 330 W/m2. A significant breakthrough lies in the potential for a specific power of 2906 W/kg because the entire device is less than 1.5 microns thick. This represents a 440 percent improvement over conventional 4-mil silicon solar cells. In addition to being lightweight, this thin device design can result in increased radiation tolerance. The attachment of the cover glass support to the front surface has been demonstrated by both silicone and electrostatic bonding techniques. Device parameters of 1.002 volts open-circuit voltage, 80 percent fill factor, and a short-circuit current of 24.3 mA/sq cm have been obtained. This demonstrates a conversion efficiency of 14.4 percent resulting in a specific power of 2240 W/kg. Additionally, this new technology offers an alternative approach for enabling multi-bandgap solar cells and high output space solar power devices. The thin device structure can be applied to any 3-5 based solar cell application, yielding both an increase in specific power and radiation tolerance.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 107-114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-29
    Description: Carbon dioxide comprises over 95 percent of the Mars atmosphere, despite continuous photolysis of CO2 by solar ultraviolet (UV) radiation. Since the direct recombination of CO and O is spinforbidden, the chemical stability of CO2 in the Martian atmosphere is thought to be the result of a HO(x)-catalyzed recombination scheme. Thus the rate of CO oxidation is sensitive to the abundance and altitude distribution of OH, H, and HO2. Most Martian atmospheric models assume that HO(x) abundances are governed purely by gas phase chemistry. However, it is well established that reactive HO(x) radical are adsorbed by a wide variety of surfaces. The authors have combined laboratory studies of H, OH, and HO2 adsorption on inorganic surfaces, observational data of aerosol distributions, and an updated photochemical model to demonstrate that adsorption on either dust or ice aerosols is capable of reducing HO(x) abundances significantly, thereby retarding the rate of CO oxidation.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the Workshop on the Evolution of the Martian Atmosphere; p 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...