ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2019-07-13
    Description: We report a preliminary measurement of coincident neutron-proton pairs emitted at 45 degrees in the interaction of 400, 530, and 650 MeV/A neon beams incident on uranium. Charged particles were identified by time of flight and momentum, as determined in a magnetic spectrometer. Neutral particles were detected using a thick plastic scintillator, and their time of flight was measured between an entrance scintillator, triggered by a charged particle, and the neutron detector. The scatter plots and contour plots of neutron momentum vs. proton momentum appear to show a slight correlation ridge above an uncorrelated background. The projections of this plane on the n-p momentum difference axis are essentially flat, showing a one standard deviation enhancement for each of the three beams energies. At each beam energy, the calculated momentum correlation function for the neutron-proton pairs is enhanced near zero neutron-proton momentum difference by approximately one standard deviation over the expected value for no correlation. This enhancement is expected to occur as a consequence of the attractive final state interaction between the neutron and proton (i.e., virtual or "singlet" deuterons). The implications of these measurements are discussed.
    Keywords: Aerospace Medicine
    Type: Zeitschrift fur Physik. A, Atomic nuclei (ISSN 0930-1151); 323; 391-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-08
    Description: A hierarchy of ENSO (El Niño/Southern Oscillation) prediction schemes has been developed which includes statistical schemes and physical models. The statistical models are, in general, based on advanced statistical techniques and can be classified into models which use either low-frequency variations in the atmosphere (sea level pressure or surface wind) or upper ocean heat content as predictors. The physical models consist of coupled ocean-atmosphere models of varying degrees of complexity, ranging from simplified coupled models of the lsquoshallow waterrsquo-type to coupled general circulation models. All models, statistical and physical, perform considerably better than the persistence forecast on predicting typical indices of ENSO on lead times of 6 to 12 months. The most successful prediction schemes, the fully physical coupled ocean-atmosphere models, show significant prediction abilities at lead times exceeding one year period. We therefore conclude that ENSO is predictable at least one year in advance. However, all of this applies to gross indices of ENSO such as the Southern Oscillation Index. Despite the demonstrated predictability, little is known about the predictability of specific features known to be associated with ENSO (e.g. Indian Monsoon rainfall, Southern African drought, or even off-equatorial sea surface temperature). Nor has the relative importance for prediction of different regional anomalies or different physical processes yet been established. A seasonal dependence in predictability is well established, but the processes responsible for it are not fully understood.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...