ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime setting of active deformation and by the feedback between shortening and uplift, glacial erosion, and orographic effects on climate accompanying mountain building.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The changes of the solid Earth in south central Alaska in response to two major glacial fluctuations on different temporal and spatial scales have been estimated and we evaluated their influence on the stress state and ongoing tectonic deformation of the region. During the recent (1993-1995) Bering Glacier surge, a large transfer of ice from the Bagley Ice Field to the Bering Glacier terminus region occurred. We estimated the elastic displacement of the solid Earth due to ice mass redistribution from Global Positioning System (GPS) measurements at sites near the surging glacier. We can account for these displacements by transfer of an ice volume of about 14 cubic km from the surge reservoir area to the terminus region. We examined the background seismicity (M(sub L) 〉 2.5) before, during, and after the surge. We found that the occurrence of small earthquakes (M(sub L) 〈 4.0) in the surge reservoir region increased during the surge time interval possibly in response to a decrease in ice mass. This suggests that a small decrease in the vertical stress, o,3, could be enough to modulate the occurrence of small, shallow earthquakes in this dominantly thrust fault setting. During this century the southern Alaska coastal glaciers have been undergoing an overall decrease in volume. Based on our compilation of changes in the extent and thickness of the coastal glaciers between the Malaspina and Bering, we calculated surface displacements due to the Earth's viscoelastic response to annual thinning and to the cumulative retreat over the last 100 years. The uplift of the region due to an average annual thinning rate of 1-6 m/yr in the ablation region is 1-12 mm/yr. For our reference model with a viscosity of 5 x 10(exp 19) Pa s for depths between approximately equal 40 and 200 km the total viscoelastic response due to the retreat over the last century may be as much as a couple of meters within the coastal ablation zone near Icy Bay. The maximum decrease in sigma(sub V) between 0 and 10 km was approximately equal 1.0 MPa, which is significant in relation to the stress drops in recent earthquakes (approximately 2 to 10 MPa) but small in relation to the estimated tectonic stress magnitude. Therefore the occurrence of an earthquake such as the St. Elias (1979, M(sub S) = 7.2) may have been advanced in time; however, most of the ongoing stress accumulation would be primarily due to tectonic forces.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain.
    Keywords: GEOPHYSICS
    Type: National Aeronautics and Space Administration, Solid Earth Science in the 1990s. Volume 2: Panel Reports; 42 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas fault have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in Central California. Within the Diablo Range the average shear strain rate was determined for the time period between 1962 and 1982 to be 0.15 + or - 0.08 microrad/yr, with the orientation of the most compressive strain at N 16 deg E + or - 14 deg. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E. It is inferred that the measured strain is due to compression across the folds of this area: the average shear straining corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. From an examination of wellbore breakout orientations and the azimuths of P-axes from earthquake focal mechanisms the inferred orientation of maximum compressive stress was found to be similar to the direction of maximum compressive strain implied by the trend of local fold structures. Results do not support the hypothesis of uniform fault-normal compression within the Coast Ranges. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10 to 12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate of the Paicines fault decreases to 4 mm/yr near Bitter.
    Keywords: GEOPHYSICS
    Type: NASA-CR-182709 , NAS 1.26:182709
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies, triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, have been processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In a third study, the geocentric position vectors from a set of 77 VLBI experiments beginning in October 1982 have been used to estimate the tangential rate of change of station positions in the western U.S. in a North-America-Fixed reference frame.
    Keywords: GEOPHYSICS
    Type: NASA-TM-100732 , REPT-89B00124 , NAS 1.15:100732
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.
    Keywords: GEOPHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies embodying this thesis triangulation and trilateration data measured on two regional networks are processed, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In the third study, VLBI data from stations distributed across the Pacific - North American plate boundary zone in the western United States are processed. The VLBI data have been used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.
    Keywords: GEOPHYSICS
    Type: NASA-CR-184604 , NAS 1.26:184604
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: The Kodiak Islands are located approx.120 to 250 km from the Alaska-Aleutian Trench and are within the southern extent of the 1964 Prince William Sound (M(sub W) = 9.2) earthquake rupture and aftershock zone. Here we report new campaign GPS results (1993-2001) from northeastern Kodiak and reprocessed GPS results (1993-1997) from southwestern Kodiak. The rate and orientation of the horizontal velocities, relative to a fixed North America, range from 29.7 +/- 1.7 mm/yr at N30.3degW +/- 3.3deg, located approx.120 km from the deepest point of the trench, to 8.0 +/- 1.3 mm/yr at N62.4degW +/- 9.3deg, located approx.230 km from the trench. We evaluated alternate models of coseismic and interseismic slip to test the importance of the mechanisms that account for surface deformation rates. Near the Gulf of Alaska coastal region of Kodiak the horizontal velocity can be accounted for primarily by the viscoelastic response to plate motion and a locked main thrust zone (MTZ), down-dip creep, and to a lesser extent, slip in the 1964 earthquake. Further inland the dominant mechanisms that account for post-1964 uplift rates are time-dependent, down-dip creep and a locked MTZ; for the horizontal velocity component southwest translation of western Kodiak may be important as well. Based on the pre-1964 and post-1964 earthquake pattern of interseismic earthquakes, we suggest that between the occurrences of great earthquakes like the 1964 event, more moderate to large earthquakes occur in the southwestern Kodiak region than near northeastern Kodiak .
    Keywords: Geophysics
    Type: UNAVCO Scienc Team Meeting; Mar 14, 2006 - Mar 16, 2006; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: The Kodiak Islands are located approximately 130 to 250 km from the Alaska-Aleutian Trench where the Pacific plate is underthrusting the North American plate at a rate of about 57 mm/yr. The southern extent of the 1964 Prince William Sound (${M-w}$ = 9.2) earthquake rupture occurred offshore and beneath the eastern portion of the Kodiak Islands. Here we report GPS results (1993-2001) from northern Kodiak Island that span the transition between the 1964 uplift region along the eastern coast and the region of coseismic subsidence further inland. The horizontal velocity vectors range from 22.9 $\pm$ 2.2 mm/yr at N26.3$\deg$W $\pm$ 2.5$\deg$, about 150 km from the trench, to 5.9 $\pm$ 1.3 mm/yr at N65.9$\deg$W $\pm$ 6.6$\deg$, about 190 km from the trench. Near the northeastern coast of Kodiak the velocity vector above the shallow, locked main thrust zone is between the orientation of PCFC-NOAM plate motion (N22$/deg$W) and the trench-normal (N3O$\deg$W). Further west, our geodetic results suggest the accumulation of shear strain that will be released eventually as left-lateral motion on upper plate faults such as the Kodiak Island fault. These results are consistent with the hypothesis that the difference between the Pacific-North American plate motion and the orientation of the down going slab would lead to 4-8 mm/yr of left-lateral slip. Short-term geodetic uplift rates range from 2 - 14 mm/yr, with the maximum uplift located near the axis of maximum subsidence during the 1964 earthquake. We evaluated alternate interseismic models for Kodiak to test the importance of various mechanisms responsible for crustal deformation rates. These models are based on the plate interface slip history inferred from earlier modeling of coseismic and post-seismic geodetic results. The horizontal (trench perpendicular) and vertical deformation rates across Kodiak are consistent with a model that includes the viscoelastic response to : (1) a downgoing Pacific plate interface that is locked at shallow depths,(2) coseismic slip in the 1964 and (3) interseismic creep below the seismogenic zone. The change in orientation of the horizontal velocity vector occurs down-dip from the locked main thrust zone. In southern Kodiak, the coseismic slip in the 1964 earthquake was smaller than in the northern Kodiak region; yet, the horizontal, interseismic velocities as a function of distance from the trench are comparable to those in northern Kodiak. Based on the earthquake history prior to, and following the 1964 earthquake, we hypothesize that the plate interface in southern Kodiak slips in more frequent large earthquakes than in northern Kodiak.
    Keywords: Geophysics
    Type: AGU Spring 2004 Joint Assembly; May 17, 2004 - May 21, 2004; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...