ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2023-01-19
    Description: Trace element partition coefficients between anorthitic plagioclase and basaltic melts (D) have been determined experimentally at 0.6 GPa and 1350–1400 °C in a lunar high-Ti picritic glass and a mid-ocean ridge basalt (MORB). Plagioclases with 98 mol% and 86 mol% anorthite were produced in the lunar picritic melt and MORB melt, respectively. Based on the new experimental partitioning data and those selected from the literature, we developed parameterized lattice strain models for the partitioning of monovalent (Na, K, Li), divalent (Ca, Mg, Ba, Sr, Ra) and trivalent (REE and Y) cations between plagioclase and silicate melt. Through the new models we showed that the partitioning of these trace elements in plagioclase depends on temperature, pressure, and the abundances of Ca and Na in plagioclase. Particularly, Na content in plagioclase primarily controls divalent element partitioning, while temperature and Ca content in plagioclase are the dominant factors for REE partitioning in plagioclase. From these models, we also derived a new expression for DRa/DBa that can be used for Ra-Th dating on volcanic plagioclase phenocrysts, and a new model for plagioclase-melt noble gas partitioning. Applications of these partitioning models to fractional crystallization of MORB and lunar magma ocean (LMO) indicate that (1) the competing effect of temperature and plagioclase composition leads to small variations of plagioclase-melt DREE during MORB differentiation, but (2) the temperature effect is especially significant and can vary anorthite-melt DREE by over one order of magnitude during LMO solidification. Temperature and plagioclase composition have to be considered when modeling the chemical differentiation of mafic to felsic magmas involving plagioclase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The source region of basalts in the mantle is chemically and lithologically heterogeneous. During decompression melting of a spatially distributed and lithologically heterogeneous mantle, mineral modes of distinct mantle sources vary continuously, resulting in spatial and temporal variations in the bulk partition coefficient of a trace element in different lithologies in the melting column, which in turn affects the fractionation of the trace element in partial melt and residual solid. This problem can be quantified by following the motion of solid in the melting column. This study presents a new melting model that can be used to keep track of spatial and temporal variations of mineral mode, melting reaction, bulk partition coefficient, and trace element concentration in the lithologically heterogeneous melting column. Simple analytical solutions for a time-dependent perfect fractional melting model are obtained. Essential features of the new model are elucidated through case studies of melting a two-lithology mantle that consists of blobs of orthopyroxene-rich lithology in the upwelling lherzolitic mantle; and an application to Sr-Nd-Hf isotope ratio variations in basalts from the Mid-Atlantic Ridge is presented. Fractional melting of the two-lithology mantle results in large temporal variations in incompatible trace element concentrations and Sr-Nd-Hf isotope ratios in the pooled melt. Mixing of fractional melts derived from different lithologies in the melting column produces enriched and depleted melts that form mixing loops in Sr-Nd-Hf isotope ratio correlation diagrams. These mixing loops rotate away from mixing lines defined by the binary mixing model and are a unique feature of melting a spatially heterogeneous mantle. Formation of the mixing loop can be traced to the location and spacing of the enriched lithological units in the melting column. The role of lithological heterogeneity is to change the bulk partition coefficient of a trace element from its values in the lherzolitic mantle to new values in the pyroxenitic mantle, which alters the extent of depletion of the trace element in the melting column. Changing bulk partition coefficient with time and space through lithological heterogeneity can result in greater variabilities in Sr-Nd-Hf isotope ratios and highly incompatible trace element concentrations in the pooled melt. Results from this study establish a framework for systematic studies of trace element fractionation and isotope ratio variation during decompression melting of a spatially distributed and lithologically heterogeneous mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...