ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2016-03-11
    Description: The TAG active hydrothermal mound, located 2.4 km east of the neovolcanic zone at 26°N, Mid-Atlantic Ridge, is −200 m in diameter, exhibits 50 m of relief, and is covered entirely by hydrothermal precipitates. Eight different types of vent solids were recovered from the mound by the submersibles Alvin and Mir in 1986, 1990, and 1991. Detailed petrographic and geochemical studies of samples and their distribution are used to deduce patterns of fluid flow and seawater/hydrothermal fluid interaction. Geochemical modeling calculations using fluid composition data corroborate these interpretations. Current activity includes highly focused flow of 363°C fluid from a chimney cluster on the top of the mound and deposition of a high ƒS2-ƒO2 mineral assemblage that reflects low concentrations of H2S in black smoker fluid. Slow percolation of black smoker fluid pooled beneath the black smoker cluster and entrainment of seawater result in formation of massive sulfide crusts and massive anhydrite. These three sample types are enriched in Co and Se. Blocks of sulfide and white smoker chimneys, enriched in Zn, Au, Ag, Sb, Cd, and Pb, are forming on the surface of the mound from black smoker fluid that has been modified by mixing with entrained seawater, precipitation of sulfides and anhydrite, and dissolution of sphalerite within the mound. This is the first time that on-going remobilization, zone refinement, and significant modification of high-temperature fluid in the near surface has been documented in a seafloor hydrothermal system. Deposits of ocherous material and massive sulfide with outer oxidized layers that formed during previous hydrothermal episodes are exposed on the steep outer walls of the mound. Studies of the full range of samples demonstrate that highly focused fluid flow, consequent seawater entrainment, and mixing within the mound can result in formation of a large seafloor hydrothermal deposit exhibiting sample types similar to those observed in Cyprus-type ore bodies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Hydrothermal systems hosted by submarine arc volcanoes commonly include a large component of magmatic fluid. The high Cu-Au contents and strongly acidic fluids in these systems are similar to those that formed in the shallow parts of some porphyry copper and epithermal gold deposits mined today on land. Two main types of hydrothermal systems occur along the submarine portion of the Kermadec arc (offshore New Zealand): magmatically influenced and seawater-dominated systems. Brothers volcano hosts both types. Here, we report results from a series of drill holes cored by the International Ocean Discovery Program into these two types of hydrothermal systems. We show that the extent of hydrothermal alteration of the host dacitic volcaniclastics and lavas reflects primary lithological porosity and contrasting spatial and temporal contributions of magmatic fluid, hydrothermal fluid, and seawater. We present a two-step model that links the changes in hydrothermal fluid regime to the evolution of the volcano caldera. Initial hydrothermal activity, prior to caldera formation, was dominated by magmatic gases and hypersaline brines. The former mixed with seawater as they ascended toward the seafloor, and the latter remained sequestered in the subsurface. Following caldera collapse, seawater infiltrated the volcano through fault-controlled permeability, interacted with wall rock and the segregated brines, and transported associated metals toward the seafloor and formed Cu-Zn-Au–rich chimneys on the caldera walls and rim, a process continuing to the present day. This two-step process may be common in submarine arc caldera volcanoes that host volcanogenic massive sulfide deposits, and it is particularly efficient at focusing mineralization at, or near, the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...