ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: During the past few years the Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have produced, respectively, global atmosphere-only and ocean-only simulations with km-scale grid spacing. These simulations have proved invaluable for process studies and for the development of satellite and in-situ sampling strategies. Nevertheless, a key limitation of these "nature" simulations is the lack of interaction between the ocean and the atmosphere, which limits their usefulness for studying air-sea interactions and for designing observing missions to study these interactions. To remove this limitation, we aim to perform a coupled simulation using the km-scale GEOS atmosphere and the km-scale MIT ocean models. The initial attempt at the km-scale coupled simulation resulted in computational issues which will be presented here. As a preliminary step towards the km-scale objective, we present results from a high resolution but not yet km-scale simulation, wherein we have coupled a cubed-sphere-720 (~ 1/8) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. A particular focus of the comparisons is the differences in interactions between Sea Surface Temperature (SST) and ocean surface wind for the coupled and uncoupled simulations. We discuss observed and modeled high temporal variability (~days) SST-wind cycle and how it is represented in the different systems. A mechanism for the cycle, which is driven by SST-wind feedback, is proposed.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN64698 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MITgcm) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies.Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (~ 1/8 deg) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12 deg) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62546 , GSFC-E-DAA-TN62544 , IMS Seminar; Oct 16, 2018; Bet Dagan; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During the past few years the Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have produced, respectively, global atmosphere-only and ocean-only simulations with km-scale grid spacing. These simulations have proved invaluable for process studies and for the development of satellite and in-situ sampling strategies. Nevertheless, a key limitation of these "nature" simulations is the lack of interaction between the ocean and the atmosphere, which limits their usefulness for studying air-sea interactions and for designing observing missions to study these interactions. We present here results from a coupled GEOS-MIT "nature run" simulation, wherein we have coupled a cubed-sphere-720 (~ 1/8) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere simulation to equivalent atmosphere-only and ocean-only simulations. A particular focus of the comparisons is the coupled versus uncoupled differences in interactions between Sea Surface Temperature (SST) and ocean surface wind. We discuss, in particular, a several-day mode of temporal variability in the SST-wind cycle and how it is represented in the different model simulations and in observationally-based products. A mechanism for the cycle, which is driven by SST-wind feedback, is proposed.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN64108 , American Geophysical Union (AGU) 2018 Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MITgcm) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies.Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (~ 1/8) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62549 , GSFC-E-DAA-TN62548 , Weizmann Institute of Science Department of Earth and Planetary Sciences Seminar; Oct 14, 2018; Rehovot; Israel|Tel Aviv University Department of Geophysics Seminar; Oct 15, 2018; Tel Aviv; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MITgcm) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies.Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (~ 1/8) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN62542 , Kinneret Limnological Laboratory (KLL) Research Seminar; Oct 18, 2018; Hukok; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MIT-GCM (General Circulation Model)) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies. Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (approximately 1/8 degrees) configuration of the GEOS atmosphere to a latitude-longitude-cap-1080 (approximately 1/12 degrees) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN62547 , Volcani Center Presentation; Oct 10, 2018; Rishon Leziyyon; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Modeling is an important tool for understanding AMOC on all timescales. Mechanistic studies of modern AMOC variability have been hampered by a lack of consistency between free-running models and the sensitivity of AMOC to resolution and parameterization. Recent work within the framework of the phase two Coordinated Ocean- Reference Experiments (CORE-II) addresses this issue head on, looking at model differences of AMOC mean state and interannual variability. One consistent feature across the models is that AMOC mean transport is related to mixed layer depths and Labrador Sea salt content, whereas interannual variability is primarily associated with Labrador Sea temperature anomalies. This is consistent with the hypothesized importance of salt balance for AMOC variability on geological timescales. The simulated relationships between AMOC and subsurface temperature anomalies in fully coupled climate models reveal subsurface AMOC fingerprints that could be used to reconstruct historical AMOC variations at low frequency.With the lack of long-term AMOC observations, models of ocean state that assimilate observational data have been explored as a way to reconstruct AMOC, but comparisons between models indicate they are quite variable in their AMOC representations. Karspeck et al. (2015) found that historical reconstructions of AMOC in such models are sensitive to the details of the data assimilation procedure. The ocean data assimilation community continues to address these issues through improved models and methods for estimating and representing error information.Two objectives of paleoclimate modeling are 1) to provide mechanistic information for interpretation of paleoclimate observations, and 2) to test the ability of predictive models to simulate Earth's climate under different background forcing states. In a good example of the first objective, Schmittner and Lund (2015) and Menviel et al. (2014) provided key information about the proxy signals expected under freshwater disturbance of AMOC, which were used to support the paleoclimate observations made by Henry et al. (2016). In an example of the second objective, Muglia and Schmittner (2015) analyzed Third Paleoclimate Modeling Intercomparison Project (PMIP3) models of the Last Glacial Maximum (LGM) and found consistently more intense and deeper AMOC transports relative to preindustrial simulations, counter to the paleoclimate consensus of LGM conditions, indicating that some processes are not well represented in the PMIP3 models. One challenge is to find adequate paleo observations against which to test these models. PMIP is now in phase 4 (part of CMIP6), which includes experiments covering five periods in Earth's history: the last millennium, last glacial maximum, last interglacial, and the mid-Pliocene. Newly compiled paleoclimate datasets from the PAGES2k project, more transient simulations, and participation of isotope enabled models planned for CMIP6PMIP4 will enable richer paleo data-model comparisons in the near future.
    Keywords: Oceanography
    Type: Report 2017-3 , GSFC-E-DAA-TN45417 , US Climate Variability and Predictability (CLIVAR) Workshop; May 23, 2016 - May 25, 2016; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Developments in ocean data assimilation (DA) and observing system technologies are intertwined. New observation types lead to new DA methods, and new DA methods such as Coupled Data Assimilation can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners are encouraged to make better use of observations that are already available, for example in strongly coupled data assimilation where ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate,as well as initializing operational long-range prediction models. There are remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean observing system throughout its history, the presence of biases and drifts in models, and simplifying assumptions made in the DA methods. From a governance point of view, more support is needed to interface the observing community and the ocean DA community. For prediction applications, the ocean DA community must work with the ocean observing community to establish protocols for rapid communication of ocean observing data on NWP timescales. There is potential for new observations to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of numerical weather prediction covering hours to weeks, out to multiple decades. It is highly encouraged that communication be fostered between thesecommunities to allow operational prediction centers the ability to provide guidance to the design of a sustained and adaptive observing network.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70691 , Frontiers in Marine Science (e-ISSN 2296-7745); 6; 391
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: During the past few years the Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have produced, respectively, global atmosphere-only and ocean-only simulations with km-scale grid spacing. These simulations have proved invaluable for process studies and for the development of satellite and in-situ sampling strategies. Nevertheless, a key limitation of these "nature" simulations is the lack of interactivity between the ocean and the atmosphere, which limits their usefulness for studying air-sea interactions and for designing observing missions to study these interactions. To remove this limitation, we aim to couple the km-scale GEOS atmosphere simulation to the km-scale MIT ocean simulation.
    Keywords: Oceanography; Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN67890 , EGU General Assembly 2019; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...