ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
  • 1
    Publication Date: 2017-05-11
    Description: The largest and most active volcano in Europe is Mount Etna located on the east coast of Sicily. Over the last decades, extensive geodetic surveys focusing on the onshore flanks of Mount Etna have revealed instability of its eastern flank, which continuously moves seawards with displacement rates of up to 50 mm/yr. Catastrophic failure of the volcanic edifice could trigger a devastating tsunami in adjacent regions. The mechanism that is driven flank deformation is still under debate. Information on the dynamics of the submerged offshore domain might give new insights into the deformation mechanism. During the FS Poseidon cruise POS496 an acoustic geodetic network of five autonomous seafloor transponders was deployed across a dextral oblique transpressive fault north of Catania Canyon. This fault is interpreted as the offshore extension of the Tremestieri Fault System and as the offshore southern margin of the sliding sector. The seafloor geodetic transponders measure acoustic distances across the fault, absolute pressure and tilt for a period of up to 3 years. In addition, we deployed six ocean bottom seismometers to record local seismicity and three tiltmeters to monitor movement offshore Mount Etna.We present first results based on 5 months of geodetic data recorded from April to August 2016. The geodetic network is capable of resolving a minimum strike-parallel displacement of 25 mm and a minimum vertical throw of 1 mm. The data shows that surface fault movement appears to be less than these resolution minima for an observation period of 5 months. To date, the instruments continue collecting data and a longer time series will either confirm this observation or depict a constant rate of motion and/or episodic acceleration.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-11
    Description: The Ionian Sea between Sicily and Calabria is known for its complex geological setting, as it is located at the convergence zone of the African and Eurasian plates. The seismogenic potential in this region is manifested by several high magnitude and disastrous earthquakes like the 1908 Messina Earthquake. Furthermore, the area is affected by intense volcanism like the Aeolian Island volcanos in the Tyrrhenian Sea and Europe’s largest active volcano, Mt Etna, sitting directly at the eastern coast of Sicily. During the last years, the possible presence of Subduction Tear Edge Propagator faults (STEP-faults) has been heavily debated. The main candidates for these faults are the Ionian Fault in the Northeast and the Alfeo-Etna Fault in the Southwest of the working area between Sicily and Calabria. Nevertheless, only little is known about near seafloor deformation zones and sedimentary processes in the Ionian Sea directly south of the Messina Strait. In order to obtain a better understanding of the sedimentary processes and the role of tectonics in the region, a new high-resolution 2D reflection seismic dataset was acquired during POS496 cruise during March – April 2016. In combination with existing additional seismic and bathymetric data, we mapped the area in terms of sedimentary and tectonic systems between Sicily and Calabria south of Messina Strait. The overall aim is to understand the relationship between tectonics and sedimentary processes in this complex geological area. The entire working area shows a variety of submarine channels, evolving from the central Messina Strait Canyon. In addition, large syn-tectonic south-north trending half grabens and sedimentary basins are imaged. The basins are filled by turbiditic- and contouritic deposits. Furthermore, several anticlines and negative flower structures were identified. We interpret these tectonic lineaments as the surface expression of deeply rooted transpressiveand transtensional fault systems. These fault systems with large strike-slip components could be near surface indicators for the proposed STEP Faults in the region. Not all morphological features like canyons/channels and structural heights follow significant tectonic lineaments. This indicates that some sedimentary features are decoupled from tectonics and are rather the expression of long lasting sedimentary processes like turbidity currents, mass transport events and bottom current activity.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-24
    Description: Summary The origin of the Ionian Sea lithosphere and the deep structure of its margins remain a little investigated part of the Mediterranean Sea. To shed light on the plate tectonic setting in this central part of southern Europe, R/V METEOR cruise M111 set out to acquire deep penetrating seismic data in the Ionian Sea. M111 formed the core of an amphibious investigation covering the Ionian Sea and island of Sicily. A total of 153 OBS/OBH deployments using French and German instruments were successfully carried out, in addition to 12 land stations installed on Sicily, which recorded the offshore air gun shots. The aim of this onshore-offshore study is to quantify the deep geometry and architecture of the Calabria subduction zone and Ionian Sea lithosphere and to shed light on the nature of the Ionian Sea crust (oceanic crust vs. thinned continental crust). Investigating the structure of the Ionian crust and lithospheric mantle will contribute to unravel the unknown ocean-continent transition and Tethys margin. Analyzing the tectonic activity and active deformation zones is essential for understanding the subduction processes that underlie the neotectonics of the Calabrian subduction zone and earthquake hazard of the Calabria/Sicily region, especially in the vicinity of local decoupling zones.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Re-examination of marine geophysical data from the continental margin of West Morocco reveals a broad zone characterized by deformation, active faults and updoming offshore the High Atlas (Morocco margin), situated next to the Tafelney Plateau. Both seismic reflection and swath-bathymetric data, acquired during Mirror marine geophysical survey in 2011, indicate recent uplift of the margin including uplift of the basement. This deformation, which we propose to name the Atlantic Atlas tectonic arch, is interpreted to result largely through uplift of the basement, which originated during the Central Atlantic rifting stage - or even during phases of Hercynian deformation. This has produced a large number of closely spaced normal and reverse faults, “piano key faults”, originating from the basement and affecting the entire sedimentary sequence, as well as the seafloor. The presence of four terraces in the Essaouira canyon system at about 3500 meters water depth and “piano key faults” and the fact that these also affect the seafloor, indicate that the Atlantic Atlas is still active north of Agadir canyon. We propose that recent uplift is causing morphogenesis of four terraces in the Essaouira canyon system. In this paper the role of both Canary plume migration and ongoing convergence between the African and Eurasian plates in the formation of the Atlantic Atlas are discussed as possibilities to explain the presence of a tectonic arch in the region. The process of reactivation of passive margins is still not well understood. The region north of Agadir canyon represents a key area to better understand this process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-27
    Description: The Gibraltar arc, spans a complex portion of the Africa-Eurasia plate boundary marked by slow oblique convergence and intermediate and deep focus seismicity. The seemingly contradictory observations of a young extensional marine basin surrounded by an arcuate fold-and-thrust belt, have led to competing geodynamic models (delamination and subduction). Geophysical data acquired in the past decade provide a test for these models and support a narrow east-dipping, subduction zone. Seismic refraction studies indicate oceanic crust below the western Gulf of Cadiz. Tomography of the upper mantle reveals a steep, east-dipping high P-wave velocity body, beneath Gibraltar. The anisotropic mantle fabric from SKS splitting shows arc-parallel "fast directions", consistent with toroidal flow around a narrow, westward retreating subducting slab. The accompanying WSW advance of the Rif-Betic mountain belt has constructed a thick pile of deformed sediments, an accretionary wedge, characterized by west-vergent thrust anticlines. Bathymetric swath-mapping images an asymmetric embayment at the deformation front where a 2 km high basement ridge has collided. Subduction has slowed significantly since 5 Ma, but deformation of recent sediments and abundant mud volcanoes suggest ongoing activity in the accretionary wedge. Three possible origins for this deformation are discussed; gravitational spreading, overall NW-SE convergence between Africa and Iberia and finally a WSW tectonic push from slow, but ongoing roll-back subduction. In the absence of arc volcanism and shallow dipping thrust type earthquakes, evidence in favor of present-day subduction can only be indirect and remains the object of debate. Continued activity of the subduction offers a possible explanation for great (M〉8.5) earthquakes known to affect the area, like the famous 1755 Great Lisbon earthquake. Recent GPS studies show SW motion of stations in N Morocco at velocities of 3-6 mm/yr indicating the presence of an independent block, a "Rif-Betic-Alboran" microplate, situated between Iberia and Africa
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-27
    Description: Subduction initiation at passive margins plays a central role in the plate tectonics theory. However, the process by which a passive margin becomes active is not well understood. In this paper we use the southwest Iberia margin (SIM) in the Atlantic Ocean to study the process of passive margin reactivation. Currently there are two tectonic mechanisms operating in the SIM: migration of the Gibraltar Arc and Africa-Eurasia convergence. Based on a new tectonic map, we propose that a new subduction zone is forming at the SIM as a result of both propagation of compressive stresses from the Gibraltar Arc and stresses related to the large-scale Africa-Eurasia convergence. The Gibraltar Arc and the SIM appear to be connected and have the potential to develop into a new eastern Atlantic subduction system. Our work suggests that the formation of new subduction zones in Atlantic-type oceans may not require the spontaneous foundering of its passive margins. Instead, subduction can be seen as an invasive process that propagates from ocean to ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: 79. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG), 5.3. - 8.3.2019, Braunschweig, Germany .
    Publication Date: 2019-05-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: AGU Fall Meeting 2009, 14.-18.12, San Francisco, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Highlights • the western Ionian Basin shows three distinct canyon-channel systems. • 〉140 m-thick gravity flow along main passageway in the east; velocity 5–6 m s−2. • numerous erosional and depositional bedforms (e.g., scours, sediment waves). • north-eastern Sicily and southern Calabria are potential source areas. • main failure likely offshore between San Leo and Bocale (southern Calabria). Abstract Earthquakes, tsunamis and gravity flows are common processes offshore Eastern Sicily and pose a significant hazard to coastal communities and infrastructure. The 1908 Messina earthquake and tsunami resulted in 〉60,000 casualties. It caused a large turbidity current, which broke the Malta-Zante telegraph cable. Yet, this gravity flow remains poorly characterised in terms of its route and flow behaviour. A comprehensive analysis of multibeam echosounder data, sub-bottom profiles, and sediment cores has been carried out to improve our understanding about gravity flow activity within conduit systems of the western Ionian Basin to reconstruct the characteristics of the 1908 sediment flow (e.g., erosion, velocity, source region). Three main canyon-channel systems can be distinguished within the study area. The easternmost system (C3) appears to be the most active in terms of sediment transport. There are numerous erosional and depositional bedforms, including large-scale scours (〉100 m-long), turbidite sediment waves and channel wall collapses that are not overprinted by younger events. The other two canyon-channel systems (C1, C2) do not show many bedforms indicative of repeated and recent gravity flow activity. Indeed, the transport of the majority of sediment discharged into the western system (C1) is limited to 〈25 km downslope from the continental slope, while the central system (C2) facilitates sediment deposition from gravity flows. C3 is, thus, suggested to have been the main passageway of the 1908 sediment flow. It also leads directly to two of three cable break locations. The most likely source areas for the gravity flow are north-eastern Sicily and southern Calabria. Bedforms indicate a flow thickness of 〉170 m along the upper channel portion of C3 and 〉 140 m along its lower portion close to the cable breaks. An average flow velocity of 5.6 to 6.3 ms−1 is reconstructed, given the timing of the breaks and length of the canyon-channel system. The flow may have locally decelerated and accelerated while bypassing morphologic highs and knickpoints. These new findings significantly improve our understanding of the 1908 gravity flow (e.g., passageways, depositional/erosional behaviour, thickness, velocity) and provide important insights into gravity flow events in general, especially those with a large run-out. This knowledge is needed to assess potential hazards associated with these events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...