ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-17
    Description: Rising carbon dioxide (CO2) has decreased seawater pH at long-term observing stations around the world, including in the open ocean north of Oahu, Hawaii, near Alaska's Aleutian Islands, the Gulf of Maine shore, and on Gray's Reef in the southeastern United States. This ocean acidification process has already affected some marine species and altered fundamental ecosystem processes, and further effects are likely. While atmospheric CO rises at approximately the same rate all over the globe, its non-climate effects on land vary depending on climate and dominant species. In terrestrial ecosystems, rising atmospheric CO concentrations are expected to increase plant photosynthesis, growth, and water-use efficiency, though these effects are reduced when nutrients, drought or other factors limit plant growth. Rising CO would likely change carbon storage and influence terrestrial hydrology and biogeochemical cycling, but concomitant effects on vegetation composition and nutrient feedbacks are challenging to predict, making decadal forecasts uncertain. Consequences of rising atmospheric CO are expected to include difficult-to-predict changes in the ecosystem services that terrestrial and ocean systems provide to humans. For instance, ocean acidification resulting from rising CO has decreased the supply of larvae that sustains commercial shellfish production in the northwestern United States. In addition, CO fertilization (increases) plus warming (decreases) are changing terrestrial crop yields. Continued persistence of uptake of carbon by the land and ocean is uncertain. Climate and environmental change create complex feedbacks to the carbon cycle and it is not clear how feedbacks modulate future effects of rising CO on carbon sinks. These are several mechanisms that could reduce future sink capacity.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN65056 , American Geophysical Union (AGU) Fall Meeting 2018; Dec 10, 2018 - Dec 14, 2018; Washington, D. C. ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-09
    Description: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 ± 19 petagrams of carbon. The oceanic sink accounts for ∼48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 ± 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: 2. International Symposium Effects of Climate Change on the World's Oceans, 15.-19.05.2012, Yeosu, Korea .
    Publication Date: 2012-12-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Royal Society of Chemistry
    In:  Energy & Environmental Science, 4 (4). pp. 1133-1146.
    Publication Date: 2019-01-22
    Description: We review data on the absorption of anthropogenic CO2 by Northern Hemisphere marginal seas (Arctic Ocean, Mediterranean Sea, Sea of Okhotsk, and East/Japan Sea) and its transport to adjacent major basins, and consider the susceptibility to recent climatic change of key factors that influence CO2 uptake by these marginal seas. Dynamic overturning circulation is a common feature of these seas, and this effectively absorbs anthropogenic CO2 and transports it from the surface to the interior of the basins. Amongst these seas only the East/Japan Sea has no outflow of intermediate and deep water (containing anthropogenic CO2) to an adjacent major basin; the others are known to be significant sources of intermediate and deep water to the open ocean. Consequently, only the East/Japan Sea retains all the anthropogenic CO2 absorbed during the anthropocene. Investigations of the properties of the water column in these seas have revealed a consistent trend of waning water column ventilation over time, probably because of changes in local atmospheric forcing. This weakening ventilation has resulted in a decrease in transport of anthropogenic CO2 from the surface to the interior of the basins, and to the adjacent open ocean. Ongoing measurements of anthropogenic CO2, other gases and hydrographic parameters in these key marginal seas will provide information on changes in global oceanic CO2 uptake associated with the predicted increasing atmospheric CO2 and future global climate change. We also review the roles of other marginal seas with no active overturning circulation systems in absorbing and storing anthropogenic CO2. The absence of overturning circulation enables anthropogenic CO2 to penetrate only into shallow depths, resulting in less accumulation of anthropogenic CO2 in these basins. As a consequence of their proximity to populated continents, these marginal seas are particularly vulnerable to human-induced perturbations. Maintaining observation programs will make it possible to assess the effects of human-induced changes on the capacity of these seas to uptake and store anthropogenic CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-30
    Description: In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term “biogeochemical functional group” to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, “functional groups” have no phylogenetic meaning—these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our tendency to model the organisms for which we have the most validation data (e.g., E. huxleyi and Trichodesmium) even when they may represent only a fraction of the biogeochemical functional group we are trying to represent. When we step back and look at the paleo-oceanographic record, it suggests that oxygen concentrations have played a central role in the evolution and emergence of many of the key functional groups that influence biogeochemical cycles in the present-day ocean. However, more subtle effects are likely to be important over the next century like changes in silicate supply or turbulence that can influence the relative success of diatoms versus dinoflagellates, coccolithophorids and diazotrophs. In general, inferences drawn from the paleo-oceanographic record and theoretical work suggest that global warming will tend to favor the latter because it will give rise to increased stratification. However, decreases in pH and Fe supply could adversely impact coccolithophorids and diazotrophs in the future. It may be necessary to include explicit dynamic representations of nitrogen fixation, denitrification, silicification and calcification in our models if our goal is predicting the oceanic carbon cycle in the future, because these processes appear to play a very significant role in the carbon cycle of the present-day ocean and they are sensitive to climate change. Observations and models suggest that it may also be necessary to include the DMS cycle to predict future climate, though the effects are still highly uncertain. We have learned a tremendous amount about the distributions and biogeochemical impact of bacteria in the ocean in recent years, yet this improved understanding has not yet been incorporated into many of our models. All of these considerations lead us toward the development of increasingly complex models. However, recent quantitative model intercomparison studies suggest that continuing to add complexity and more functional groups to our ecosystem models may lead to decreases in predictive ability if the models are not properly constrained with available data. We also caution that capturing the present-day variability tells us little about how well a particular model can predict the future. If our goal is to develop models that can be used to predict how the oceans will respond to global warming, then we need to make more rigorous assessments of predictive skill using the available data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: We quantify the oceanic sink for anthropogenic carbon dioxide (CO 2 ) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO 2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year −1 and represents 31 ± 4% of the global anthropogenic CO 2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO 2 , substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017, while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...