ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • 1
    Publication Date: 2019-07-19
    Description: Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been overprinted by metamorphic processes, which is the case for NWA 7034.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-34385 , GSA 2015; Nov 01, 2015 - Nov 04, 2015; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The mineral apatite is present in a wide range of planetary materials. The presence of volatiles (F, Cl, and OH) within its crystal structure (X-site) have motivated numerous studies to investigate the partitioning behavior of F, Cl, and OH between apatite and silicate melt with the end goal of using apatite to constrain the volatile contents of planetary magmas and mantle sources. A number of recent experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in magmatic systems. Apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, the partitioning behavior is likely to change as a function of temperature, pressure, oxygen fugacity, apatite composition, and melt composition. In the present study, we have conducted experiments to assess the partitioning behavior of F, Cl, and OH between apatite and silicate melt over a pressure range of 0-6 gigapascals, a temperature range of 950-1500 degrees Centigrade, and a wide range of apatite ternary compositions. All of the experiments were conducted between iron-wustite oxidation potentials IW minus 1 and IW plus 2 in a basaltic melt composition. The experimental run products were analyzed by a combination of electron probe microanalysis and secondary ion mass spectrometry (NanoSIMS). Temperature, apatite crystal chemistry, and pressure all play important roles in the partitioning behavior of F, Cl, and OH between apatite and silicate melt. In portions of apatite ternary space that undergo ideal mixing of F, Cl, and OH, exchange coefficients remain constant at constant temperature and pressure. However, exchange coefficients vary at constant temperature (T) and pressure (P) in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. The variation in exchange coefficients exhibited by apatite that does not undergo ideal mixing far exceeds the variations induced by changes in temperature (T) or pressure (P) . In regions where apatite undergoes ideal mixing of F, Cl, and OH, temperature has a stronger effect than pressure on the partitioning behavior, but both are important. Furthermore, fluorine becomes less compatible in apatite with increasing pressure and temperature. We are still in the process of analyzing our experimental run products, but we plan to quantify the effects of P and T on apatite-melt partitioning of F, Cl, and OH.
    Keywords: Geophysics
    Type: JSC-CN-40619 , Geological Society of America Annual Meeting (GSA 2017); Oct 22, 2017 - Oct 25, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36825 , Annual Meeting of the Geological Society of America; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Laser Ablation ICP-MS (LA-ICP-MS) has been widely accepted as a microanalytical technique for in-situ trace (ppb) elemental analysis on the micron scale in a variety of geologic materials. LA-ICP-MS (single or multi-collector) provides both elemental and isotopic measurements critical for a wide range of geological research by generating a fine grained aerosol (nm scale) during the laser ablation event and delivering that aerosol to the ICP ion source of the mass spectrometer via an inert carrier gas. LA-ICP-MS, however, suffers from limitations in analyzing high ionization potential elements as well as elements subject to atmospheric and argon based interferences. LA-ICP-MS also has limitations in analyzing major elements due to detector saturation. An alternative laser ablation technique, Laser Induced Breakdown Spectroscopy (LIBS), employs an optical spectrometer integrated into the laser ablation system that analyzes the laser induced plasma at the sample surface across the entire optical spectrum for emission lines of every element in the periodic table. Elements that are difficult or impossible to measure with LA-ICP-MS are now possible to analyze with LIBS down to low ppm levels with CCD and/or ICCD detection. We introduce a new laser based technique, Tandem LA-LIBS, that combines LA for ICP-MS and LIBS into one integrated laser ablation system. This system has the effect of expanding the elemental coverage and the dynamic range of the laser ablation experiment as measurements from ppb to % level matrix elements can now be analyzed in a single ablation experiment. We present both femtosecond and nanosecond Tandem LA-LIBS quantitative and qualitative data on wide range of geological materials for those elements that are difficult or impossible by traditional LA-ICP-MS techniques such as F, H, O, N, C, S, halogens, etc. We also demonstrate that the simultaneous measurement of trace, minor and major elements are now possible in a single laser ablation experiment with Tandem LA-LIBS technology.
    Keywords: Geophysics
    Type: JSC-E-DAA-TN56157 , Goldschmidt Conference 2018; Aug 12, 2018 - Aug 17, 2018; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.
    Keywords: Numerical Analysis; Geophysics
    Type: JSC-CN-39278 , Annual Goldschmidt Conference 2017; Aug 13, 2017 - Aug 18, 2017; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Despite all of the new data generated on endogenous lunar volatiles since the publication of New Views of the Moon, many important questions remain unanswered or only partially resolved. This abstract looks to the future and discusses several of those important remaining questions on the topic of endogenous lunar volatiles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN52631 , New Views of the Moon 2 - Asia; Apr 18, 2018 - Apr 20, 2018; Fukushima; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...