ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN32780 , Life in Space for Life on Earth 2016; Jun 05, 2016 - Jun 10, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry
    Keywords: Behavioral Sciences
    Type: ARC-E-DAA-TN13021 , BIT''s Annual conference and EXPO of AnalytiX-2014; Apr 25, 2014 - Apr 28, 2014; Dalian, China; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-18
    Description: In this presentation, I will describe the effects of increased gravity on mammalian development in rodents, from gestation throughout weaning. The work is based on studies of centrifugation-induced hypergravity-rearing, the fundamentals of which will be described. The key variables include: 1) comparison of first-time (primparous) and experienced (multiparous) rodent mothers; 2) prenatal adaptation to the centrifuge; and 3) application of a modest g-load (1.5-g). The reported findings emphasize pregnancy, labor and birth, maternal care and lactation in the dams, and suckling, growth, development, and weaning in the offspring. Pregnancy success and offspring growth and survival will be discussed.
    Keywords: Life Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-17
    Description: In 1995, ten pregnant female rats were launched on the Space Shuttle (STS-70) on Gestational day (G) 11 of their 22-day pregnancy as part of the NASA/NIH.Rodent (R)2 Experiment. Following landing on G20, fetuses were harvested from half of the dams, 0 g while the remaining five dams underwent birth. Spaceflight did not interrupt pregnancy, alter litter sizes, or affect body weights or gender ratios of the fetuses or neonates. Analyses of rats exposed to Hypergravity (HG) at 2.0-g, HG 1.75-g, HG 1.5-g were also conducted. Dams were exposed to continuous centrifugation from G I I through G20, with brief daily stops for animal health checks and maintenance. For both the G20 and Birth dams, comparable litter sizes and litter gender ratios were observed across gravity conditions. However, centrifugation-exposed (HG and RC) fetuses and neonates showed significantly lower body masses (p less than 0.05) relative to SC offspring. FIG 2.0-g offspring weighed significantly less than those in all other gravity conditions (p less than 0.05). Changes in the mothers care of the young will be discussed.
    Keywords: Aerospace Medicine
    Type: International Society for Gravitational Physiology Meeting; Apr 22, 2001 - Apr 29, 2001; Budapest; Hungary
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Ovarian estrogen impacts the normal homeostatic and metabolic processes of all tissues and organ systems within the body: particularly, but not limited to canonical space-flight impacted systems: bone, muscle, immune, wound repair, and cardiovascular. Effects of space flight on the ovarian estrogen production are therefore critical to our understanding of all space flight experiments using female mice, the current paradigm being used on the International Space Station (ISS). Recently, we demonstrated that vaginal wall histology could be used to determine the stage of the estrous cycle in female mice at the time of sacrifice in space. Moreover, this robust technique was completed following two post-flight freezethaw procedures of the carcasses (RR1 experiment). Thus, this technique represents a viable mechanism to determine the estrous cycle status of the female at the time of sacrifice and can be completed in a manner that does not impact primary experimental objectives. We propose that vaginal wall histology become a standard procedure completed on all mice sacrificed in space and that the individual estrous status of each animal be shared with all investigators. While evidence of estrous cyclicity was present in long-term (33 day) RR1 mice, fertility of female mice exposed to weightlessness remains unknown. In preparation for an upcoming funded NASA flight investigating the effects of long duration spaceflight on female fertility, we have refined our experimental design to minimize crew flight time and to accommodate the duration of Dragon capsule berth. These refinements maintain all our proposed primary and secondary experimental objectives. Briefly, in order to evaluate fertility, we will super ovulate mice using standard procedures (PMSG hCG), followed by collection of reproductive tract after follicular stimulation alone (PMSG) or following ovulation (hCG). Ovarian folliculogenesis and ovulation rate will be determined in fixed tissues following return in order to determine fertility. Ovarian and uterine tissues will also be evaluated by hormonal and gene expression profiling using quantitative approaches (radioimmunoassays, western blots, digital droplet PCR). Comparisons will be made to contemporary vivarium and Rodent Research Hardware Transporter and Habitat housed animals maintained on earth. Supported by NNX15AB48G to JST.
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: ARC-E-DAA-TN44719 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-17
    Description: In 1995, ten pregnant female rats were launched on the Space Shuttle (STS-70) on Gestational day(G) 11 of their 22-day pregnancy as part of the NASA/NIH.Rodent (R)2 Experiment. Following landing on G20, fetuses were harvested from half of the dams, while the remaining five dams underwent birth. Spaceflight did not interrupt pregnancy, alter litter sizes, or affect body weights or gender ratios of the fetuses or neonates. In the present study we used the NASA/NIH.R2 experimental paradigm to analyze the effects of hypergravity on pregnancy outcome. On G10, time-bred Sprague-Dawley rat dams were assigned to either G20 or Birth conditions, then further assigned to Hypergravity (HG) 2.0-g, HG 1.75-g, HG 1.5-g, Rotational Control (RC, 1.03), or Stationary Control (SC, 1.0-g) treatments. Dams were exposed to continuous centrifugation from G11 through G20, with brief daily stops for animal health checks and maintenance. For both the G20 and Birth dams, comparable litter sizes and litter gender ratios were observed across gravity conditions. However, centrifugation-exposed (HG and RC) fetuses and neonates showed significantly lower body masses (p less than 0.05) relative to SC offspring. HG 2.0-g offspring weighed significantly less than those in all other gravity conditions (p less than 0.05). The observed reductions in offspring body mass at 1.5-g and 1.75-g, can be attributed to the rotational component of centrifugation, rather than to increased gravitational load, whereas 2.0-g hypergravity exposure further exacerbated the gravity centrifugation effect on offspring body mass. Pregnant dams exposed to centrifugation weighed significantly less than SC dams (p less than 0.05), suggesting that centrifugation effects on maternal body mass may contribute to reduced size of the developing offspring. These findings are consistent with previous reports of non-pregnant adult animals suggesting that, whereas spaceflight has virtually no effect on body mass, centrifugation is associated with changes in body weight regulation.
    Keywords: Life Sciences (General)
    Type: Annual Experimental Biology Meeting; Mar 29, 2001 - Apr 04, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-17
    Description: We analyzed the effects of 2.0-g, 1.75-g and 1.5-g hypergravity exposure on plasma concentrations of the lactotrophic hormone, prolactin (PRL), in female rats on pre-parturient (Gestation Day 20), parturient (Post-natal day 0) and lactating (P10) days. PRL levels have been found to be reduced in rat dams around the time of birth following exposure to gravitational loads varying from 2.16 to 3.14-g (Megory et. al., Aviation, Space and Environs 1129-1135, 1984). It has also been reported that at these high gravitational loads, neonatal mortality has been extremely high, suggesting a possible interaction between dam PRL concentration and neonatal outcome. We have previously reported no significant differences in PRL levels of parturient (PO) and lactating (P6 & P 15) dams when exposed to 1.5-g hypergravity, but did observe a slight elevation of PRL on PO and P 15, with a decrease on P6. In the present study, time-bred pregnant dams were exposed to either continuous 2.0-g, 1.75-g or 1.5-g centrifugation, beginning on Gestational day (G) 11 of the rats' 22-day pregnancy. We observed no significant differences in PRL concentrations between SC and any of the HG conditions. On G20 and PO, PRL concentrations of the 2.0-g and 1.5-g groups were slightly elevated as compared to SC. Similar to what we previously reported. PRL secretion was elevated in both HG and SC conditions on the day of birth relative to later during lactation, but on P10 it appeared to be reduced in HG relative to SC dams. These findings suggests that hypergravity slightly elevates plasma concentration of PRL in pre-parturient and lactating rat dams, with effects most pronounced during the periparturitional period and in a direction opposite to that observed following microgravity exposure.
    Keywords: Life Sciences (General)
    Type: Annual Experimental Biology Meeting; Mar 29, 2001 - Apr 04, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-10
    Description: Rat dams and offspring were exposed to 1.5-g, 1.75-g or 2.0-g hypergravity (hg) from Gestational day (G) 11 until Postnatal day (P) 10. To ascertain the role of maternal factors in reduced postnatal body weights of offspring developed in hg, the dams' lactational hormones were measured. Oxytocin (OT), the major hormone responsible for milk ejection, was reduced in hg dams whereas prolactin (Prl), involved in milk production, was unchanged. Video analyses of nursing behavior revealed that hg dams spent more time nursing relative to 1-g controls. We hypothesized impaired milk transfer from dam to pup, however pup body weight gains following a discrete suckling episode were comparable across conditions. Changes in lactational hormones and nursing behavior by dams exposed to hg do not account for reduced body masses of their offspring.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-11-28
    Description: Extra-terrestrial colonization is of growing interest to space agencies and private entities, emphasizing the importance of research on reproduction and development in the absence of Earth's 1G. Maternal stressors can modify offspring development, exerting significant lifespan and crossgenerational changes through prenatal programming. The space environment is stressful, therefore exposure to altered gravity during pregnancy may impact later life outcomes in offspring. In ground-based studies, we exposed pregnant rats to continuous +G (above Earth gravity), and observed overweight and elevated anxiety in adult male (but not female) offspring, common phenotypes associated with prenatal maternal stress. Here we hypothesize that exposure to increased gravity during pregnancy elicits changes in the expression of stress-related genes in placenta that may mediate emergence of later life outcomes. While the placenta transports maternal factors to the fetus and produces endogenous fetal hormones, stress-induced changes at the placental-uterine interface may also alter communication between mother and fetus, facilitating prenatal transmission of unfavorable later life outcomes and cross-generational epigenetic alterations. Maternal stress elevates maternal glucocorticoids however placental 11b-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers fetal exposure by converting cortisol/corticosterone into inactive metabolites. Maternal stress during pregnancy down-regulates this enzyme and can induce epigenetic changes in placental and fetal tissues accounting for heightened adult HPA reactivity. Past studies have shown a placenta-specific increase in DNA methyltransferase (DNMT3a) mRNA in stressed mothers, an effect with implications for genome-wide epigenetic changes that may account for diverse phenotypic outcomes following maternal stress. Here we exposed groups of pregnant rats to one of five gravity loads (1, 1.5, 1.75 and 2G) and analyzed placental samples during late gestation. We predicted a systematic dose-response relationship between gravity load and the expression of the HSD11B2 and DNMT3 genes, thereby linking maternal exposure to altered gravity during pregancy with maternal stress.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75635 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p〈0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
    Keywords: Life Sciences (General)
    Type: Journal of Gravitational Physiology, Volume 12, Number 1; P183-P184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...