ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-10
    Description: Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine- shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.
    Keywords: Numerical Analysis
    Type: AIAA Paper 2003-0368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-10
    Description: It is well known that the resonator geometry strongly influences the resonant frequencies of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects are obtained through an automation scheme based on continuation methods. Results are presented from optimizing cone, horn-cone, and cosine resonator geometries. Significant performance improvement is found in the optimized shapes over others previously published. Different optimized shapes are found when starting with different initial guesses, indicating multiple local extrema. The numerical model is validated by comparing with the experimental results of a horn-cone shaped resonator.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The object of this study was to determine the fate of PGE2-induced new cortical bone mass after withdrawal of PGE2 administration. Seven-month-old male Sprague-Dawley rats were given subcutaneous injections of 1, 3 and 6 mg PGE2/kg/day for 60 days and then withdrawn for 60 and 120 days (on/off treatment). Histomorphometric analyses were performed on double-fluorescent-labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). In a previous report we showed that after 60, 120 and 180 days of daily PGE2 (on)treatment, a new steady state was achieved marked by increased total bone area (+ 16%, +25% and + 34% with 1, 3 and 6 mg PGE2/kg/day) when compared to age-matched controls. The continuous PGE2 treatment stimulated periosteal and endocortical lamellar bone formation, activated endocortical woven trabecular bone formation and intracortical bone resorption. These responses increased cortical bone mass since the bone formation exceeded bone resorption. The current study showed that after withdrawal of PGE2 for 60 and 120 days, the extra endocortical bone, which was induced by the first 60-days treatment, was resorbed, but the new subperiosteal bone persisted resulting in a tibial shaft with larger cross sectional and marrow areas. Despite that, there was still the same amount of bone mass in these shafts as in age-related controls. A new steady state was achieved after 60 days of withdrawal, in which the bone mass and bone formation activity approximated that of age-related controls. It was concluded that maintaining the extra PGE2-induced cortical bone mass depends on continuous daily administration of PGE2.
    Keywords: Life Sciences (General)
    Type: NASA-CR-204207 , NAS 1.26:204207 , BAM-00432 , Bone and Mineral (ISSN 0169-6009); 17; 31-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .
    Keywords: Life Sciences (General)
    Type: NASA-CR-202469 , NAS 1.26:202469 , Calcified Tissue International; 50; 245-252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the traditional bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-1 1,1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. Furthermore, the observations and the well-proven bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that the bulk and bin simulations have distinct differences, most notably in the stratiform region of the squall line system. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region simulated in the bulk scheme model are remnants of the stronger convections previously at the leading edge of the system, sustained by horizontal vorticity generated by its own cool pool near the surface. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in the convective zone simulated in the bulk microphysical scheme, which is unrealistic because of the assumptions made in raindrop size distribution. Further sensitivity tests that reduce the evaporation rate in bulk scheme artificially produce more upright convective core and less weak cores in stratiform region. However, they produce weaker upper level outflow and consequently less stratiform rain area. The addition of a more realistic raindrop breakup scheme in the bin scheme results more realistic radar reflectivity and stronger surface rainfall. Despite the increase of the rain evaporation and strengthening of the near surface cool pool, bin scheme with rain breakup shows homogeneous stratiform rain. These sensitivity tests prove the robustness of the bin microphysical scheme and the difficulty of tuning the limited parameters in the bulk microphysical scheme to realistically reproduce detail structures in a mid-latitude squall line case study.
    Keywords: Meteorology and Climatology
    Type: AGU Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
    Keywords: Life Sciences (General)
    Type: NASA-CR-203773 , NAS 1.26:203773 , The Anatomical Record; 230; 332-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in younger rats.
    Keywords: Life Sciences (General)
    Type: NASA-CR-203771 , NAS 1.26:203771 , The Anatomical Record; 234; 317-334
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
    Keywords: Life Sciences (General)
    Type: NASA-CR-202673 , NAS 1.26:202673 , Anatomical Record; 230; 332-338
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: The effects of long-term prostaglandin E2 (PGE2) on tibial diaphyseal bone were studied in 7-month-old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg/day for 60, 120 and 180 days. The tibial shaft was measured by single photon absorptiometry and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial diaphyseal bone samples. Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased bone width and mineral density; (2) increased total tissue and total bone areas; (3) decreased marrow area; (4) increased periosteal and corticoendosteal lamellar bone formation; (5) activated corticoendosteal lamellar and woven trabecular bone formation; and (6) activated intracortical bone remodeling. A new steady-state of increased tibial diaphyseal bone mass and elevated bone activities were observed from day 60 onward. The elevated bone mass level attained after 60 days of PGE2 treatment was maintained at 120 and 180 days. These observations indicate that the powerful anabolic effects of PGE2 will increase both periosteal and corticoendosteal bone mass and sustain the transient increase in bone mass with continuous daily administration of PGE2.
    Keywords: Life Sciences (General)
    Type: NASA-CR-202672 , NAS 1.26:202672 , BAM-00396 , Bone and Mineral (ISSN 0169-6009); 15; 33-55
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloaded)-induced cortical bone loss as well as add extra bone to underloaded bones. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to simultaneous right hindlimb immobilization by bandaging and daily subcutaneous doses of 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). Disuse-induced cortical bone loss occurred by enlarging the marrow cavity and increasing intracortical porosity. PGE2 treatment of disuse shafts further increased intracortical porosity above that in disuse alone controls. This bone loss was counteracted by enhancement of periosteal and corticoendosteal bone formation. Stimulation of periosteal and corticoendosteal bone formation slightly enlarged the total tissue (cross-sectional) area and inhibited marrow cavity enlargement. These PGE2-induced activities netted the same percentage of cortical bone with a different distribution than the beginning and age related controls. These findings indicate the PGE2-induced increase in bone formation compensated for the disuse and PGE2-induced bone loss, and thus prevented immobilization induced bone loss.
    Keywords: Life Sciences (General)
    Type: NASA-CR-202681 , NAS 1.26:202681 , Bone (ISSN 8756-3282); 13; 153-159
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...