ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (13)
Collection
Source
  • 11
    Publication Date: 2022-01-31
    Description: As coastal areas become increasingly vulnerable to climate change, the study of nearshore sediment textures along the littoral cell of the Medjerda delta in the Gulf of Tunis, southern Mediterranean coast can provide valuable information (i) on the origin (continental or marine) of the sediment, (ii) its transport direction, and (iii) constitutes an important tool in the assessment of coastal sensitivity. A total of 120 sediments samples underwent grain size analysis and statistic parameters have been calculated. These allowed the identification of five different Sedimentary Types (ST). Accordingly, using grain size indexes (i.e. Mz, SKI and Ku), Sediment Trend Analysis (STA) modeling tools were applied to define the seasonal sediment transport pathways throughout the nearshore of the Medjerda sedimentary cell. Results show that grain size distribution (GSD) and STA model pathways are determined by cross-shore geomorphology, location of the sediment-cell, seasonal incident wave and local terrestrial supply. The appearance in an atypical seabed location of the finer (Mo = 0.1 mm) and the coarser STs (Mo = 0.8 mm) can be indicative of human influence since the coarser particles are usually retained by dam structures. Moreover, the bimodality and the increased distribution of mud are also related to the seasonal incident wave winnowing of the historic deltaic plain submerged by the relative rise in sea level. The evolution of the sediment pattern towards a greater proportion of very fine grains indicates a deficit of sediment supply, particularly of the coarser grains, and demonstrates the coastal vulnerability of the Gulf of Tunis due to anthropic effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-31
    Description: Dramatic changes from a cold and dry last glacial to a warm and wet Holocene period intensified the Indian summer monsoon (ISM), resulting in vigorous hydrology and increased terrestrial erosion. Here we present seawater neodymium (Nd) data (expressed in εNd) from Andaman Sea sediments to assess past changes in the ISM and the related impact of Irrawaddy–Salween and Sittoung (ISS) river discharge into the Andaman Sea in the northeastern Indian Ocean. Four major isotopic changes were identified: (1) a gradual increase in εNd toward a more radiogenic signature during the Last Glacial Maximum (22–18 ka), suggesting a gradual decrease in the ISS discharge; (2) a relatively stable radiogenic seawater εNd between 17.2 and 8.8 ka, perhaps related to a stable reduced outflow; (3) a rapid transition to less radiogenic εNd signature after 8.8 ka, reflecting a very wet early–mid-Holocene with the highest discharge; and (4) a decrease in εNd signal stability in the mid–late Holocene. Taking into account the contribution of the ISS rivers to the Andaman Sea εNd signature that changes proportionally with the strengthening (less radiogenic εNd) or weakening (more radiogenic εNd) of the ISM, we propose a binary model mixing between the Salween and Irrawaddy rivers to explain the εNd variability in Andaman Sea sediments. We hypothesize that the Irrawaddy river mainly contributed detrital sediment to the northeastern Andaman Sea for the past 24 ka. Our εNd data shed new light on the regional changes in Indo-Asian monsoon systems when compared with the existing Indian and Chinese paleo-proxy records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-08
    Description: Highlights • Prominent North Atlantic sea surface cooling and freshening of ~3.5 °C and ~0.7‰ during ~3.65–3.5 Ma. • Surface cooling and freshening inline with a decrease of benthic δ13C records from South Atlantic Ocean sites. • Surface cooling and freshening at the same time as sea ice extension in the Arctic Ocean. Abstract The North Atlantic Current (NAC) as part of the Atlantic Meridional Overturning Circulation (AMOC) is the major supplier of heat into the northern North Atlantic. Pliocene changes of AMOC strength were speculated to either have amplified or diminished the Northern Hemisphere Glaciation (NHG) 2.7 million years ago (Ma). However, from the North Atlantic, little evidence is known about AMOC changes at around 3.6 Ma. At this time the intensification of NHG started and culminated in the first major glacial M2 event at 3.3 Ma. To elaborate the climatic effects of variations in the NAC during this early stage of NHG, we here present millennial-scale resolved records from Deep Sea Drilling (DSDP) Site 610A in the northern North Atlantic. Our data of planktic foraminiferal Mg/Ca-based sea surface temperatures (SSTMg/Ca) and ice volume corrected salinity approximations (δ18OIVC-seawater) span the critical time period 4–3.3 Ma. From 3.65 to 3.5 Ma, we observe a distinct ~3.5 °C cooling and ~0.7‰ freshening of the sea surface, which we interpret to reflect a weakened NAC. At the same time Arctic sea ice grew and benthic δ13C in the South Atlantic suggest a weakened AMOC. We conclude that the weakened NAC in response to a sluggish AMOC fostered sea ice formation in the Arctic Ocean and high-latitude North Atlantic, which might have preconditioned the climate for subsequent continental glaciations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...